We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
What are the contexts that give rise to cooperation as opposed to conflict? When should we love thy neighbor, turn the other cheek, or escalate? Game theory is an effort to formalize this problem such that we can ask what decisions we should make when the consequences of those decisions depend on the decisions of others. By this accounting, war is a game, as is negotiation, rock-paper-scissors, and love making. The difference is in the payoffs. Being rational is about making decisions that lead to the best outcomes. The hawks and doves of political foreign policy – who advocate for more or less aggressive military intervention – are rational beings in this world, because the nature of the payoffs demands certain kinds of responses. The pragmatics of high stakes games underpin quotes like John F. Kennedy’s "We can secure peace only by preparing for war." But is Kennedy’s statement rational by the logic of the game in which it is embedded? Is it rational when games of conflict are played repeatedly in a network of global interactions? By combining game theory with network science, we can make some progress toward understanding these issues.
In this work, the shape of a bluff body is optimized to mitigate velocity fluctuations of turbulent wake flows based on large-eddy simulations (LES). The Reynolds-averaged Navier–Stokes method fails to capture velocity fluctuations, while direct numerical simulations are computationally prohibitive. This necessitates using the LES method for shape optimization given its scale-resolving capability and relatively affordable computational cost. However, using LES for optimization faces challenges in sensitivity estimation as the chaotic nature of turbulent flows can lead to the blowup of the conventional adjoint-based gradient. Here, we propose using the regularized ensemble Kalman method for the LES-based optimization. The method is a statistical optimization approach that uses the sample covariance between geometric parameters and LES predictions to estimate the model gradient, circumventing the blowup issue of the adjoint method for chaotic systems. Moreover, the method allows for the imposition of smoothness constraints with one additional regularization step. The ensemble-based gradient is first evaluated for the Lorenz system, demonstrating its accuracy in the gradient calculation of the chaotic problem. Further, with the proposed method, the cylinder is optimized to be an asymmetric oval, which significantly reduces turbulent kinetic energy and meander amplitudes in the wake flows. The spectral analysis methods are used to characterize the flow field around the optimized shape, identifying large-scale flow structures responsible for the reduction in velocity fluctuations. Furthermore, it is found that the velocity difference in the shear layer is decreased with the shape change, which alleviates the Kelvin–Helmholtz instability and the wake meandering.
This is the first of a two-part paper. We formulate a data-driven method for constructing finite-volume discretizations of an arbitrary dynamical system's underlying Liouville/Fokker–Planck equation. A method is employed that allows for flexibility in partitioning state space, generalizes to function spaces, applies to arbitrarily long sequences of time-series data, is robust to noise and quantifies uncertainty with respect to finite sample effects. After applying the method, one is left with Markov states (cell centres) and a random matrix approximation to the generator. When used in tandem, they emulate the statistics of the underlying system. We illustrate the method on the Lorenz equations (a three-dimensional ordinary differential equation) saving a fluid dynamical application for Part 2 (Souza, J. Fluid Mech., vol. 997, 2024, A2).
As most mathematically justifiable Lagrangian coherent structure detection methods rely on spatial derivatives, their applicability to sparse trajectory data has been limited. For experimental fluid dynamicists and natural scientists working with Lagrangian trajectory data via passive tracers in unsteady flows (e.g. Lagrangian particle tracking or ocean buoys), obtaining material measures of fluid rotation or stretching is an active topic of research. To facilitate frame-indifferent investigations in unsteady and sparsely sampled flows, we present a novel approach to quantify fluid stretching and rotation via relative Lagrangian velocities. This technique provides a formal objective extension of quasi-objective metrics to unsteady flows by accounting for mean flow behaviour. For extremely sparse experimental data, fluid structures may be significantly undersampled and the mean flow behaviour becomes difficult to quantify. We provide a means to maintain the accuracy of our novel sparse flow diagnostics in extremely sparse sampling scenarios, such as ocean buoy data and Lagrangian particle tracking. We use data from multiple numerical and experimental flows to show that our methods can identify structures beyond existing limits of sparse, frame-indifferent diagnostics and exhibit improved interpretability over common frame-dependent diagnostics.
High-dimensional dynamical systems projected onto a lower-dimensional manifold cease to be deterministic and are best described by probability distributions in the projected state space. Their equations of motion map onto an evolution operator with a deterministic component, describing the projected dynamics, and a stochastic one representing the neglected dimensions. This is illustrated with data-driven models for a moderate-Reynolds-number turbulent channel. It is shown that, for projections in which the deterministic component is dominant, relatively ‘physics-free’ stochastic Markovian models can be constructed that mimic many of the statistics of the real flow, even for fairly crude operator approximations, and this is related to general properties of Markov chains. Deterministic models converge to steady states, but the simplified stochastic models can be used to suggest what is essential to the flow and what is not.
Microbes play a primary role in wide-ranging biogeochemical and physiological processes, where ambient fluid flows are responsible for cell dispersal as well as mixing of dissolved resources, signalling molecules and biochemical products. Determining the simultaneous (and often coupled) transport properties of actively swimming cells together with passive scalars is key to understanding and ultimately predicting these complex processes. In recent work, Ran & Arratia (J. Fluid Mech., vol. 988, 2024, A25) present the striking observation that dilute concentrations of swimming bacteria severely hinder scalar transport through Lagrangian vortex boundaries in a chaotic flow. Analysis of rotation-dominated regions suggests that local accumulation of bacteria enhances the strength of transport barriers and highlights the role of understudied elliptical Lagrangian coherent structures in bacterial and multicomponent transport.
We investigate the effects of bacterial activity on the mixing and transport properties of a passive scalar in time-periodic flows in experiments and in a simple model. We focus on the interactions between swimming Escherichia coli and the Lagrangian coherent structures (LCSs) of the flow, which are computed from experimentally measured velocity fields. Experiments show that such interactions are non-trivial and can lead to transport barriers through which the scalar flux is significantly reduced. Using the Poincaré map, we show that these transport barriers coincide with the outermost members of elliptic LCSs known as Lagrangian vortex boundaries. Numerical simulations further show that elliptic LCSs can repel elongated swimmers and lead to swimmer depletion within Lagrangian coherent vortices. A simple mechanism shows that such depletion is due to the preferential alignment of elongated swimmers with the tangents of elliptic LCSs. Our results provide insights into understanding the transport of micro-organisms in complex flows with dynamical topological features from a Lagrangian viewpoint.
Path planning for the unmanned aerial vehicle (UAV) is to assist in finding the proper path, serving as a critical role in the intelligence of a UAV. In this paper, a path planning for UAV in three-dimensional environment (3D) based on enhanced gravitational search algorithm (EGSA) is put forward, taking the path length, yaw angle, pitch angle, and flight altitude as considerations of the path. Considering EGSA is easy to fall into local optimum and convergence insufficiency, two factors that are the memory of current optimal and random disturbance with chaotic levy flight are adopted during the update of particle velocity, improving the balance between exploration and exploitation for EGSA through different time-varying characteristics. With the identical cost function, EGSA is compared with seven peer algorithms, such as moth flame optimization algorithm, gravitational search algorithm, and five variants of gravitational search algorithm. The experimental results demonstrate that EGSA is superior to the seven comparison algorithms on CEC 2020 benchmark functions and the path planning method based on EGSA is more valuable than the other seven methods in diverse environments.
The Earth’s radiation balances are being altered by a number of changes in the composition of the atmosphere, and as a consequence the climate system is being ‘forced’, almost certainly in the direction of higher temperatures. In earlier chapters we examined the physics of the processes involved. What are likely to be the effects of such changes? The only way to answer questions such as this is to model the Climate System in sufficient detail. Firstly, we need to model the atmosphere, something we have been doing for half a century to forecast the weather. Because of the significant exchanges of both heat and water between the ocean and the atmosphere, it is clearly necessary to couple an ocean model. Ice sheets are likely to be affected by warming, as they are one of the key feedback processes just mentioned. The land surface also has significant interactions on various timescales.
Events of extreme intensity in turbulent flows from atmospheric to industrial scales have a strong social and economic impact, and hence there is a need to develop models and indicators which enable their early prediction. Part of the difficulty here stems from the intrinsic sensitivity to initial conditions of turbulent flows. Despite recent progress in understanding and predicting extreme events, the question of how far in advance they can be ideally predicted (without model error and subject only to uncertainty in the initial conditions) remains open. Here we study the predictability limit of extreme dissipation bursts in the two-dimensional Kolmogorov flow by applying information-theoretic measures to massive statistical ensembles with more than $10^7$ direct numerical simulations. We find that extreme events with similar intensity and structure can exhibit disparate predictability due to different causal origins. Specifically, we show that highly predictable extreme events evolve from distinct large-scale circulation patterns. We thus suggest that understanding all the possible routes to the formation of extreme events is necessary to assess their predictability.
We explore the transition to chaos in a prototypical hydrodynamic oscillator, namely a globally unstable low-density jet subjected to external time-periodic forcing. As the forcing strengthens at an off-resonant frequency, we find that the jet exhibits a sequence of nonlinear states: period-1 limit cycle $\rightarrow $ quasiperiodicity $\rightarrow$ intermittency $\rightarrow$ low-dimensional chaos. We show that the intermittency obeys type-II Pomeau–Manneville dynamics by analysing the first return map and the scaling properties of the quasiperiodic lifetimes between successive chaotic epochs. By providing experimental evidence of the type-II intermittency route to chaos in a globally unstable jet, this study reinforces the idea that strange attractors emerge via universal mechanisms in open self-excited flows, facilitating the development of instability control strategies based on chaos theory.
The synchronisation between rotating turbulent flows in periodic boxes is investigated numerically. The flows are coupled via a master–slave coupling, taking the Fourier modes with wavenumber below a given value $k_m$ as the master modes. It is found that synchronisation happens when $k_m$ exceeds a threshold value $k_c$, and $k_c$ depends strongly on the forcing scheme. In rotating Kolmogorov flows, $k_c\eta$ does not change with rotation in the range of rotation rates considered, $\eta$ being the Kolmogorov length scale. Even though the energy spectrum has a steeper slope, the value of $k_c\eta$ is the same as that found in isotropic turbulence. In flows driven by a forcing term maintaining constant energy injection rate, synchronisation becomes easier when rotation is stronger. Here, $k_c\eta$ decreases with rotation, and it is reduced significantly for strong rotations when the slope of the energy spectrum approaches $-3$. It is shown that the conditional Lyapunov exponent for a given $k_m$ is reduced by rotation in the flows driven by the second type of forcing, but it increases mildly with rotation for the Kolmogorov flows. The local conditional Lyapunov exponents fluctuate more strongly as rotation is increased, although synchronisation occurs as long as the average conditional Lyapunov exponents are negative. We also look for the relationship between $k_c$ and the energy spectra of the Lyapunov vectors. We find that the spectra always seem to peak at approximately $k_c$, and synchronisation fails when the energy spectra of the conditional Lyapunov vectors have a local maximum in the slaved modes.
We experimentally investigate the forced synchronization of a self-excited chaotic thermoacoustic oscillator with two natural frequencies, $f_1$ and $f_2$. On increasing the forcing amplitude, $\epsilon _f$, at a fixed forcing frequency, $f_f$, we find two different types of synchronization: (i) $f_f/f_1 = 1:1$ or $2:1$ chaos-destroying synchronization (CDS), and (ii) phase synchronization of chaos (PSC). En route to $1:1$ CDS, the system transitions from an unforced chaotic state (${\rm {CH}}_{1,2}$) to a forced chaotic state (${\rm {CH}}_{1,2,f}$), then to a two-frequency quasiperiodic state where chaos is destroyed ($\mathbb {T}^2_{2,f}$), and finally to a phase-locked period-1 state (${\rm {P1}}_f$). The route to $2:1$ CDS is similar, but the quasiperiodic state hosts a doubled torus $(2\mathbb {T}^2_{2,f})$ that transforms into a phase-locked period-2 orbit $({\rm {P2}}_f)$ when CDS occurs. En route to PSC, the system transitions to a forced chaotic state (${\rm {CH}}_{1,2,f}$) followed by a phase-locked chaotic state, where $f_1$, $f_2$ and $f_f$ still coexist but their phase difference remains bounded. We find that the maximum reduction in thermoacoustic amplitude occurs near the onset of CDS, and that the critical $\epsilon _f$ required for the onset of CDS does not vary significantly with $f_f$. We then use two unidirectionally coupled Anishchenko–Astakhov oscillators to phenomenologically model the experimental synchronization dynamics, including (i) the route to $1:1$ CDS, (ii) various phase dynamics, such as phase drifting, slipping and locking, and (iii) the thermoacoustic amplitude variations in the $f_f/f_1$–$\epsilon _f$ plane. This study extends the applicability of open-loop control further to a chaotic thermoacoustic system, demonstrating (i) the feasibility of using an existing actuation strategy to weaken aperiodic thermoacoustic oscillations, and (ii) the possibility of developing new active suppression strategies based on both established and emerging methods of chaos control.
A core contention woven into the fabric of Sun Tzu’s thinking is that all situations faced by a strategic actor, even those that appear on their face to be losing ones, hold seeds of opportunity that, if grasped correctly, can be parlayed into strategic advantage.1 An illustrative statement starts off Passage #5.1 below.
We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity regime where (a) the production and dissipation rates of uncertainty grow together in time, (b) the parts of the uncertainty production rate accountable to average strain rate properties on the one hand and fluctuating strain rate properties on the other also grow together in time, (c) the average uncertainty energies along the three different strain rate principal axes remain constant as a ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum's evolution is self-similar if normalised by the uncertainty's average uncertainty energy and characteristic length and (e) the uncertainty production rate is extremely intermittent and skewed towards extreme compression events even though the most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty energy grows exponentially in this similarity time range. The Lyapunov exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale, indicating a dependence on random large-scale sweeping of dissipative eddies. In the two DNS cases of statistically stationary turbulence, this exponential growth is followed by an exponential of exponential growth, which is, in turn, followed by a linear growth in the one DNS case where the Navier–Stokes forcing also produces uncertainty.
Since the 1920s, American writers have evinced a fascination with and investment in fictional representations of jazz music and jazz musicians. As this essay demonstrates, part of jazz’s appeal for fiction writers is that it offers the opportunity to explore various kinds of border crossing. This essay surveys several jazz fictions to explicate how these fictions portray jazz as a local event, often focusing on musicians who may not be known beyond their own communities, but who live to play the music. Using Nathaniel Mackey’s concept of artistic othering, this essay investigates how writers portray the jazz musician’s search for a space to belong, where artistic forms of risk-taking are affirmed and the contingencies jazz musicians face, whether it be in the form of substance abuse, underemployment, self-doubt, or social injustice can be managed through instances where self-repair, improvisation, and community constitute the foundations of the musician’s lifeworld. Jazz fiction, in other words, is deeply concerned with the contradictions of American life and how playing jazz music involves the act of containing contradictions.
The dynamics of turbulent flows is chaotic and difficult to predict. This makes the design of accurate reduced-order models challenging. The overarching objective of this paper is to propose a nonlinear decomposition of the turbulent state to predict the flow based on a reduced-order representation of the dynamics. We divide the turbulent flow into a spatial problem and a temporal problem. First, we compute the latent space, which is the manifold onto which the turbulent dynamics live. The latent space is found by a series of nonlinear filtering operations, which are performed by a convolutional autoencoder (CAE). The CAE provides the decomposition in space. Second, we predict the time evolution of the turbulent state in the latent space, which is performed by an echo state network (ESN). The ESN provides the evolution in time. Third, by combining the CAE and the ESN, we obtain an autonomous dynamical system: the CAE-ESN. This is the reduced-order model of the turbulent flow. We test the CAE-ESN on the two-dimensional Kolmogorov flow and the three-dimensional minimal flow unit. We show that the CAE-ESN: (i) finds a latent-space representation of the turbulent flow that has ${\lesssim }1\,\%$ of the degrees of freedom than the physical space; (ii) time-accurately and statistically predicts the flow at different Reynolds numbers; and (iii) takes ${\lesssim }1\,\%$ computational time to predict the flow with respect to solving the governing equations. This work opens possibilities for nonlinear decomposition and reduced-order modelling of turbulent flows from data.
We present the results of direct numerical simulations of a NACA 0012 airfoil, with Mach number 0.3 and angle of attack of $3^\circ$, examining the dynamics of the flow with increasing Reynolds numbers. Two-dimensional simulation results are obtained with chord-based Reynolds numbers in the range $3.2 \times 10^3 \leq Re \leq 2.70 \times 10^4$, where each simulation uses the last time step of the previous one as a starting point, to capture the evolution of dynamics as a function of $Re$. The development of the pressure fluctuations with time shows a transition from periodic to quasi-periodic attractor for $2.38 \times 10^4 \leq Re \leq 2.42 \times 10^4$, leading to the emergence of secondary tones in the wall and acoustic field pressure spectra, different from peaks related to the fundamental frequency $f_1$ and the respective harmonics; a second, incommensurate frequency $f_2$ appears, leading to several secondary tones with frequency $af_1 + bf_2$, with $a$ and $b$ integers. Further increase of the Reynolds number leads to the emergence of a tertiary frequency, $f_3$, indicating a route to chaos of the Ruelle–Takens–Newhouse type. Such a mechanism is related to the ladder-type characteristic structure of the tones, indicating that dynamic systems theory is an important tool for understanding airfoil tonal noise.
In this paper, we prove the continuity of iteration operators $\mathcal {J}_n$ on the space of all continuous self-maps of a locally compact Hausdorff space X and generally discuss dynamical behaviors of them. We characterize their fixed points and periodic points for $X=\mathbb {R}$ and the unit circle $S^1$. Then we indicate that all orbits of $\mathcal {J}_n$ are bounded; however, we prove that for $X=\mathbb {R}$ and $S^1$, every fixed point of $\mathcal {J}_n$ which is non-constant and equals the identity on its range is not Lyapunov stable. The boundedness and the instability exhibit the complexity of the system, but we show that the complicated behavior is not Devaney chaotic. We give a sufficient condition to classify the systems generated by iteration operators up to topological conjugacy.