We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gymnema sylvestre (Retz.) R. Br. ex Schult is a highly demanded antidiabetic medicinal herb native to India. There are no improved varieties available and the plant is still collected from the wild and therefore it is important to estimate the genetic variability and heritability parameters for devising appropriate crop improvement strategy. The present study was undertaken to assess the genetic variability, heritability, character association and path analysis for growth, yield and bioactive traits in 35 accessions of G. sylvestre collected from Indian South Peninsular region. Genetic variability parameters: genotypic variance, phenotypic variance, genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), broad-sense heritability, genetic advance and genetic advance as per cent over mean of yield and quality related characters were computed to understand the extent of variability present. High levels of GCV and PCV (>20%) were observed for most of the traits. Leaf length, leaf area, leaf yield and gymnemagenin content reported with high heritability (>60%) and genetic advance over mean (>30%) suggest that variation in these traits is influenced predominantly by the genetic factors making selection more effective in improving them. The correlation and path analysis studies highlighted the importance of selecting leaf length, leaf breadth, leaf area index, fresh leaf yield and gymnemagenin content for improving dry leaf yield of G. sylvestre. The study also identified promising morphotypes (IIHR-GS-27 and IIHR-GS-9) and chemotypes (IIHR-GS-44) which can be utilized for the commercial exploitation or can serve as pre-breeding materials in the crop improvement programmes.
Attempts to develop high yielding varieties in Ghana have mostly relied on the introduction of new clones to broaden the range of planting materials for yield improvement. The objective of this study was to estimate the genetic variation and heritability for bean yield of six recommended cocoa clones using these as males in crosses with five seed garden parents. Twenty-four families obtained from a 5 × 6 North Carolina II (NC II) incomplete factorial mating design together with 19 high yielding single crosses, of which four were standard mixed hybrids, were planted in a randomized complete block design with four replications and evaluated for bean yield over 6 years. To account for the serial correlation among yield data collected from the same plants over years, six models with different covariance structures were tested. The general covariance model emerged appropriate based on Akaike information criterion values with significant (P < 0.01) family × year interaction. Average bean yield was highest in the NC II families followed by the specific crosses then the standard mixed hybrids. Combining ability analysis among the NC II was significant for female, male and female × male interaction along with a narrow-sense heritability of 0.26. Clone CRG 6035 among the males which had good general combining ability could be added to the seed garden parents, while the promising hybrids (NA 33 × SCA 9, SCA 6 × Pound 10, T60/887 × PA 121 and T79/501 × CRG 6035/103) undergo stability tests before release.
This study was conducted to estimate the relative contribution of dominance genetic effects to efficiency-related traits including Kleiber ratio (KR), efficiency of growth (EF) and relative growth rate (RGR) in Baluchi sheep. To this end, each trait was analysed with a series of 12 animal models which were identical for fixed and additive genetic effects but differed for combinations of dominance genetic and maternal effects. The Akaike's information criterion (AIC) was used to rank models. (Co)variances between traits were estimated using bivariate analyses. For all traits studied, according to AIC values, models containing the dominance genetic effects provided a better data fit than otherwise identical models. By including dominance genetic effects in the model, additive genetic variance did not change, but a significant decrease was observed in the residual variance (24, 19 and 25% for KR, EF and RGR, respectively). Estimates of dominance heritability $( {\boldsymbol h}_{\boldsymbol d}^ 2 )$ were 0.20 ± 0.05, 0.17 ± 0.05 and 0.19 ± 0.07 for KR, EF and RGR, respectively, more than corresponding estimates of additive heritability ${\bf ( }{\boldsymbol h}_{\boldsymbol a}^{\bf 2} {\bf ) }$ as 0.14 ± 0.02, 0.09 ± 0.03 and 0.13 ± 0.02, respectively. Dominance genetic correlations between traits were 0.89 ± 0.17 (KR-EF), 0.86 ± 0.20 (KR-RGR) and 0.93 ± 0.21 (EF-RGR). Additive genetic correlations between traits were 0.84 ± 0.05 (KR-EF), 0.78 ± 0.04 (KR-RGR) and 0.83 ± 0.04 (EF-RGR). The Spearman correlation between additive breeding values including and excluding dominance genetic effects were close to unity either for all animals or top ranked animals. Since presence of dominance genetic effects increased the model power to fit the data, inclusion of these effects in the genetic evaluation models for Baluchi sheep was recommended.
Social support is often considered an environmental factor affecting health, especially in aging populations. However, its genetic underpinnings suggest a more complex origin. This study investigates the heritability of social support through applying a threshold model on data of a large adult sample of twins (N = 8019) from the Netherlands Twin Register, collected between 2009 and 2011. The study employed the Duke – UNC Functional Social Support Questionnaire to assess social support quality. Our analysis revealed genetic contributions to social support, with heritability estimated at 37%, without a contribution of shared environment and no differences between men and women in heritability. The study’s results underscore the complexity of social support as a trait influenced by genetic and environmental factors, challenging the notion that it is solely an environmental construct.
This research aimed to assess the agronomic performance of the progeny (F3 and F4 generations) of 48 newly developed Aus rice lines, using a randomized-complete-block-design under rainfed conditions. We found a wide range of variations in yield and yield-contributing traits among the studied genotypes. High board sense heritability percentages were found for sterility percentage (99.50 and 97.20), thousand-grain-weight (88.10 and 90.20 g), plant-height (84.90 and 86.90 cm) and day-to-maturity (84.50 and 97.60 d) in both F3 and F4 generations, respectively. However, the highest genetic advance as mean percentage was observed for sterility (48.00 and 50.60), effective tillers number per hill (ET) (44.70 and 47.10), total tillers number per hill (TT) (43.00 and 45.40) and filled-grains per panicle (41.00 and 43.20) respectively. Notably, the correlation study also identified the traits, TT (r = 0.31 and 0.45), ET (r = 0.30 and 0.44), straw yield (r = 0.57 and 0.39) and harvest index (r = 0.63 and 0.67) as effective for improving grain yield in both F3 and F4 generations, respectively. We identified higher grain yield per hill (g) and shorter to moderate crop growth duration (days) in several distinct accessions, including R1-49-7-1-1, R3-26-4-3-1, R1-6-2-3-1, R1-13-1-1-1, R1-50-1-1-1, R3-49-4-3-1, R1-47-7-3-1, R2-26-6-2-2, R3-30-1-2-1 and R1-44-1-2-1, among the 48 genotypes in both the F3 and F4 generations. A further location-specific agronomic study is recommended to assess the drought tolerance of these promising genotypes. This will further assess their suitability as potential breeding materials when developing rice varieties adapted to grow under fluctuating rainfalls conditions.
Major depressive disorder (MDD) is the leading cause of disability globally, with moderate heritability and well-established socio-environmental risk factors. Genetic studies have been mostly restricted to European settings, with polygenic scores (PGS) demonstrating low portability across diverse global populations.
Methods
This study examines genetic architecture, polygenic prediction, and socio-environmental correlates of MDD in a family-based sample of 10 032 individuals from Nepal with array genotyping data. We used genome-based restricted maximum likelihood to estimate heritability, applied S-LDXR to estimate the cross-ancestry genetic correlation between Nepalese and European samples, and modeled PGS trained on a GWAS meta-analysis of European and East Asian ancestry samples.
Results
We estimated the narrow-sense heritability of lifetime MDD in Nepal to be 0.26 (95% CI 0.18–0.34, p = 8.5 × 10−6). Our analysis was underpowered to estimate the cross-ancestry genetic correlation (rg = 0.26, 95% CI −0.29 to 0.81). MDD risk was associated with higher age (beta = 0.071, 95% CI 0.06–0.08), female sex (beta = 0.160, 95% CI 0.15–0.17), and childhood exposure to potentially traumatic events (beta = 0.050, 95% CI 0.03–0.07), while neither the depression PGS (beta = 0.004, 95% CI −0.004 to 0.01) or its interaction with childhood trauma (beta = 0.007, 95% CI −0.01 to 0.03) were strongly associated with MDD.
Conclusions
Estimates of lifetime MDD heritability in this Nepalese sample were similar to previous European ancestry samples, but PGS trained on European data did not predict MDD in this sample. This may be due to differences in ancestry-linked causal variants, differences in depression phenotyping between the training and target data, or setting-specific environmental factors that modulate genetic effects. Additional research among under-represented global populations will ensure equitable translation of genomic findings.
TwinsMX registry is a national research initiative in Mexico that aims to understand the complex interplay between genetics and environment in shaping physical and mental health traits among the country’s population. With a multidisciplinary approach, TwinsMX aims to advance our knowledge of the genetic and environmental mechanisms underlying ethnic variations in complex traits and diseases, including behavioral, psychometric, anthropometric, metabolic, cardiovascular and mental disorders. With information gathered from over 2800 twins, this article updates the prevalence of several complex traits; and describes the advances and novel ideas we have implemented such as magnetic resonance imaging. The future expansion of the TwinsMX registry will enhance our comprehension of the intricate interplay between genetics and environment in shaping health and disease in the Mexican population. Overall, this report describes the progress in the building of a solid database that will allow the study of complex traits in the Mexican population, valuable not only for our consortium, but also for the worldwide scientific community, by providing new insights of understudied genetically admixed populations.
The current study was motivated by an interest in deepening understanding of Brazilian twin research, which is underrepresented internationally, in an effort to rectify this situation. Our aim was threefold: (1) to carry out a comprehensive investigation of Brazilian research on twins according to the area of knowledge; (2) to evaluate the representation of research in the field of psychology in comparison with other areas; (3) to evaluate characteristics of the research that may have contributed to its exclusion from the comprehensive meta-analysis of 50 years of twin research. A scoping review was performed according to PRISMA guidelines. Titles and abstracts were searched up to 2022 in six databases: CAPES, BDLTD, PePSIC, PubMed, Google Scholar, and SciELO, using selected keywords both in Portuguese and in English (e.g., ‘twins’ and ‘Brazil’; ‘twinning’ and ‘Brazil’; ‘gemelaridade’ [twinning], and ‘gêmeos’ [twins]). Three hundred and forty publications were included in the review. Approximately half (53.8‰) used the classic twin design to investigate the heritability of several traits, and the other half (46.2%) used other research designs. The scoping review showed that the number of publications doubled approximately every 10 years. Most publications were from the health area, with medicine accounting for approximately half of the studies, followed by psychology, odontology, and biology. We found that the interest in studying twins among Brazilian scientists is increasing over the years and there are reasons to be enthusiastic about the potential impact of this trend in the global scenario.
Wellbeing is relatively stable over the life span. However, individuals differ in this stability and change. One explanation for these differences could be the influence of different genetic or environmental factors on wellbeing over time.
Methods
To investigate causes of stability and change of wellbeing across the lifespan, we used cohort-sequential data on wellbeing from twins and their siblings of the Netherlands Twin Register (NTR) (total N = 46.885, 56% females). We organized wellbeing data in multiple age groups, from childhood (age 5), to adolescence, up to old age (age 61+). Applying a longitudinal genetic simplex model, we investigated the phenotypic stability of wellbeing and continuity and change in genetic and environmental influences.
Results
Wellbeing peaked in childhood, decreased during adolescence, and stabilized during adulthood. In childhood and adolescence, around 40% of the individual differences was explained by genetic effects. The heritability decreased toward old adulthood (35–24%) and the contribution of unique environmental effects increased to 76%. Environmental innovation was found at every age, whereas genetic innovation was only observed during adolescence (10–18 years). In childhood and adulthood, the absence of genetic innovation indicates a stable underlying set of genes influencing wellbeing during these life phases.
Conclusion
These findings provide insights into the stability and change of wellbeing and the genetic and environmental influences across the lifespan. Genetic effects were mostly stable, except in adolescence, whereas the environmental innovation at every age suggests that changing environmental factors are a source of changes in individual differences in wellbeing over time.
We explore ethical premises and practical implications of using genetic testing to predict suicide risk. Twin studies indicate heritable components of suicide risk, and associated heritability of mental disorders. Currently, genetics research has abandoned seeking single gene Mendelian determinants, in favour of complex probabilistic epigenetic models. Genome-Wide Association Studies (GWAS) may identify thousands of single nucleotide polymorphisms (SNPs), each contributing very little to the variance in behavioural phenotypes. Since suicide is a behaviour rather than a phenotype, with many different causal aetiologies, it is impossible to predict the behaviours of individuals. We analyse practical and ethical issues that would arise if future research were to identify genetic information that accurately predicts suicide. We examine analytical validity, clinical validity, clinical utility and ethical, legal and social implications. Low sensitivity and specificity for predicting suicide diminish potential advantages and exacerbate risks. We discuss risks of unregulated direct-to-consumer genetic testing services. If someday genetic testing can accurately identify suicide risk in individuals, its use would be contraindicated if we cannot provide effective preventive interventions and mitigate negative impacts of informing people of their suicide risk.
This chapter delves into the age-old nature versus nurture debate, exploring the factors that mold our individuality. As Margaret Mead observed, our distinctiveness arises from a blend of life experiences and inherent traits. Even identical twins exhibit subtle distinctions. We scrutinize whether our abilities stem from innate brain maturation or learned experiences, with nativists and empiricists offering opposing perspectives. The chapter introduces two key concepts for understanding human development. First, we explore genes – their nature, role in development, and contribution to human diversity. We delve into the intricate mechanisms governing gene expression, including the impact of epigenetics. Second, we examine how the mature brain evolves from prenatal origins, shaped by genetics and epigenetics. We challenge the notion that genes alone dictate our identities, emphasizing the dynamic interplay between genes and the environment. We avoid the term innate, recognizing the remarkable adaptability of the human brain–gene system. Our aim is to embrace the intricate interplay of genetics and environment, unveiling the path from genotype to phenotype – the observable expression of our genetic makeup.
Tetraploid wheat species from Ethiopia hold ample genetic variation, which could provide a source for improvement of wheat. A total of 196 Ethiopian tetraploid wheat (Triticum turgidum spp.) accessions, including 174 landraces and 22 improved cultivars, were evaluated at Sinana and Debrezeit to assess morphological variation, genetic advance, heritability and correlation based on 11 phenotypic traits. Except for spike length, highly significant variation (P < 0.001) among genotypes for all traits was observed. The observed mean and range values of the phenotypic traits revealed high variability in the accessions. Phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) values were high for grain yield, biomass yield and harvest index. Seed yield showed highly significant (P < 0.001) negative correlation with days to booting and days to maturity and positive correlation with all traits. The estimates of heritability (H2) for grain yield and the number of spikelets per spike respectively ranged from 41.78 to 84.62%. The genetic advance as a percentage of mean was low for the number of seeds per spikelet, days to booting and days to maturity; intermediate for plant height, thousand kernel weight and spike length and high for the number of spikelets per spike, the number of effective tillers per plant, grain yield, biomass yield and harvest index, respectively. The number of spikelets per spike gave a high value of genetic advance and heritability implying high genetic gain from its selection.
The present study analysed a total of 272 saffron (Crocus sativus L.) genotypes using multivariate analysis. We carefully observed and recorded information about the floral, morphological and corm attributes. Significant variations were observed among the genotypes for all the traits, indicating a high level of variability and suggesting a great potential for saffron improvement. The phenotypic variances were found to be greater than the estimated genotypic variances. Descriptive data on various morphological traits revealed significant differences in the frequency of phenotype classes as well as a wide distribution range. The high heritability estimates were observed in average number of daughter corms per plant (ANDCPP), initial weight of corms (IWC g), no. of buds/corm (NBPC), – no. of leaves in main sprout, (NLMS), number of sprouted buds per corm (NSBpC) and total number of leaves (TNL), whereas average weight of daughter corms per plant (AWBCPP), corm diameter (CDcm), pistal length (PL) cm, style length (STYLcm), fresh weight of pistals per plant (FWOPPPmg) and stigma length (STML cm), revealed medium sense of heritability. The traits dry weight of pistals per plants (DWOPPP mg), inner tepal width (ITW cm), leaf length (LLcm), number of flowers per corm (NFpC), outer tepal length (OTLcm), parianth length with tube (PLWT cm) and weight of stigma (WSTG mg) exhibited low broad-sense heritability. Principal component analysis (PCA) divulged that the first eight component characters had an eigenvalue greater than one with a contributory cumulative variance of 66.15% to the total variance, while as rest of the 16 components contributed 33.85% of total variation in a set of 272 genotypes of saffron. The eigenvalues for yield attributing traits for significant PCs ranged from 5.48 (PC1) to 1.03(PC8). The current study has revealed that there was a sufficient variability in a set of saffron germplasm lines which forms the basis for performance-based clonal selection. Moreover, identified elite genotypes based on saffron yield and corm attributes could be used in the saffron breeding programme for the development of saffron varieties.
We investigate if covariation between parental and child attention-deficit hyperactivity disorder (ADHD) behaviors can be explained by environmental and/or genetic transmission.
Methods
We employed a large children-of-twins-and-siblings sample (N = 22 276 parents and 11 566 8-year-old children) of the Norwegian Mother, Father and Child Cohort Study. This enabled us to disentangle intergenerational influences via parental genes and parental behaviors (i.e. genetic and environmental transmission, respectively). Fathers reported on their own symptoms and mothers on their own and their child's symptoms.
Results
Child ADHD behaviors correlated with their mother's (0.24) and father's (0.10) ADHD behaviors. These correlations were largely due to additive genetic transmission. Variation in children's ADHD behaviors was explained by genetic factors active in both generations (11%) and genetic factors specific to the children (46%), giving a total heritability of 57%. There were small effects of parental ADHD behaviors (2% environmental transmission) and gene–environment correlation (3%). The remaining variability in ADHD behaviors was due to individual-specific environmental factors.
Conclusions
The intergenerational resemblance of ADHD behaviors is primarily due to genetic transmission, with little evidence for parental ADHD behaviors causing children's ADHD behaviors. This contradicts theories proposing environmental explanations of intergenerational transmission of ADHD, such as parenting theories or psychological life-history theory.
The study was undertaken to estimate the genetic parameters of lactation curve parameters of Wood's function in Jersey crossbred cattle using the Bayesian approach. Data on 33,906 fortnightly test day milk yields of 1,718 lactation records of Jersey crossbred cows, maintained at the ICAR-National Dairy Research Institute in West Bengal, were collected over a period of 40 years. The lactation curve parameters including ‘a’ (initial milk yield after calving), ‘b’ (ascending slope up to peak yield) and ‘c’ (descending slope after peak yield) and lactation curve traits, peak yield (ymax), time of peak yield (tmax) and persistency of milk yield (P) of individual cow for each lactation were estimated using the incomplete gamma function (Wood's model) by fitting the Gauss–Newton algorithm as an iteration method using PROC NLIN procedure of SAS 9.3. Variance components and genetic parameters of lactation curve parameters/traits were estimated by a repeatability animal model using the Bayesian approach. Estimates of heritabilities were found to be 0.18 ± 0.05, 0.09 ± 0.03 and 0.11 ± 0.04 for parameters ‘a’, ‘b’ and ‘c’, respectively and 0.24 ± 0.05, 0.12 ± 0.04, and 0.15 ± 0.05 for ymax, tmax and P, respectively. Repeatability estimates were 0.31 ± 0.03, 0.21 ± 0.04 and 0.30 ± 0.04 for parameters ‘a’, ‘b’ and ‘c’ respectively and 0.39 ± 0.03, 0.24 ± 0.03 and 0.37 ± 0.03 for ymax, tmax and p, respectively. Genetic correlations among lactation curve parameters/traits ranged from −0.75 to 0.95. Existence of genetic correlations among lactation curve parameters/traits indicated substantial genetic and physiological relationships among lactation curve parameters/traits of Jersey crossbred cattle.
This article uses a behavioral genetics approach to study gender differences in expressed political interest, applying the enriched environment hypothesis to gendered political socialization. As girls are less stimulated to develop an interest in politics than boys, we theorize that these differences in the socialization environment reduce the expression of girls’ genetic predispositions compared to boys’, leading to a gender gap in the heritability of this trait. Analyses using data on German twins (11–25 years) demonstrate relevant differences by gender and age in heritability estimates. While differences in political interest between boys are largely explained by genes, this is less the case for girls, as they have considerably higher shared environment estimates. Our results imply that gender differences in expressed political interest are sustained by both genetic variation and environmental influences (such as socialization), as well as the interaction between the two.
Aging plays a crucial role in the mechanisms of the impacts of genetic and environmental factors on blood pressure and serum lipids. However, to our knowledge, how the influence of genetic and environmental factors on the correlation between blood pressure and serum lipids changes with age remains to be determined. In this study, data from the Chinese National Twin Registry (CNTR) were used. Resting blood pressure, including systolic and diastolic blood pressure (SBP and DBP), and fasting serum lipids, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TGs) were measured in 2378 participants (1189 twin pairs). Univariate and bivariate structural equation models examined the genetic and environmental influences on blood pressure and serum lipids among three age groups. All phenotypes showed moderate to high heritability (0.37–0.59) and moderate unique environmental variance (0.30–0.44). The heritability of all phenotypes showed a decreasing trend with age. Among all phenotypes, SBP and DBP showed a significant monotonic decreasing trend. For phenotype-phenotype pairs, the phenotypic correlation (Rph) of each pair ranged from −0.04 to 0.23, and the additive genetic correlation (Ra) ranged from 0.00 to 0.36. For TC&SBP, TC&DBP, TG&SBP and TGs&DBP, both the Rph and Ra declined with age, and the Ra difference between the young group and the older adult group is statistically significant (p < .05). The unique environmental correlation (Re) of each pair did not follow any pattern with age and remained relatively stable with age. In summary, we observed that the heritability of blood pressure was affected by age. Moreover, blood pressure and serum lipids shared common genetic backgrounds, and age had an impact on the phenotypic correlation and genetic correlations.
The corpus callosum (CC) is a brain structure with a high heritability and potential role in psychiatric disorders. However, the genetic architecture of the CC and the genetic link with psychiatric disorders remain largely unclear. We investigated the genetic architectures of the volume of the CC and its subregions and the genetic overlap with psychiatric disorders.
Methods:
We applied multivariate genome-wide association study (GWAS) to genetic and T1-weighted magnetic resonance imaging (MRI) data of 40,894 individuals from the UK Biobank, aiming to boost genetic discovery and to assess the pleiotropic effects across volumes of the five subregions of the CC (posterior, mid-posterior, central, mid-anterior and anterior) obtained by FreeSurfer 7.1. Multivariate GWAS was run combining all subregions, co-varying for relevant variables. Gene-set enrichment analyses were performed using MAGMA. Linkage disequilibrium score regression (LDSC) was used to determine Single nucleotide polymorphism (SNP)-based heritability of total CC volume and volumes of its subregions as well as their genetic correlations with relevant psychiatric traits.
Results:
We identified 70 independent loci with distributed effects across the five subregions of the CC (p < 5 × 10−8). Additionally, we identified 33 significant loci in the anterior subregion, 23 in the mid-anterior, 29 in the central, 7 in the mid-posterior and 56 in the posterior subregion. Gene-set analysis revealed 156 significant genes contributing to volume of the CC subregions (p < 2.6 × 10−6). LDSC estimated the heritability of CC to (h2SNP = 0.38, SE = 0.03) and subregions ranging from 0.22 (SE = 0.02) to 0.37 (SE = 0.03). We found significant genetic correlations of total CC volume with bipolar disorder (BD, rg = −0.09, SE = 0.03; p = 5.9 × 10−3) and drinks consumed per week (rg = −0.09, SE = 0.02; p = 4.8 × 10−4), and volume of the mid-anterior subregion with BD (rg = −0.12, SE = 0.02; p = 2.5 × 10−4), major depressive disorder (MDD) (rg = −0.12, SE = 0.04; p = 3.6 × 10−3), drinks consumed per week (rg = −0.13, SE = 0.04; p = 1.8 × 10−3) and cannabis use (rg = −0.09, SE = 0.03; p = 8.4 × 10−3).
Conclusions:
Our results demonstrate that the CC has a polygenic architecture implicating multiple genes and show that CC subregion volumes are heritable. We found that distinct genetic factors are involved in the development of anterior and posterior subregions, consistent with their divergent functional specialisation. Significant genetic correlation between volumes of the CC and BD, drinks per week, MDD and cannabis consumption subregion volumes with psychiatric traits is noteworthy and deserving of further investigation.
We examine some of the genetic features of neuroticism (N) taking as an animal model the Maudsley Reactive (MR) and Maudsley Nonreactive (MNR) rat strains which were selectively bred, respectively, for high and low open-field defecation (OFD) starting in the late 1950s. To draw analogies with human genetic studies, we explore the genetic correlation of N with irritable bowel syndrome (IBS). We review progress with the rat model and developments in the field of human complex trait genetics, including genetic association studies that relate to current understanding of the genetics of N. The widespread differences in the tone of the peripheral sympathetic nervous system that have been found between the Maudsley strains, particularly those observed in the colon, may underly the differences in OFD (MNR, higher sympathetic tone and zero defecation). In humans, a large genome-wide association study (GWAS) reported six genes contributing to IBS, four of which were implicated in mood and anxiety disorders or were expressed in the brain, with three of the four also expressed in the nerve fibers and ganglia of the gut. Heritability of N is estimated at around 50% in twin and family studies, and GWASs identified hundreds of loci, enabling estimation of genome-wide correlations (rg) with other traits. Significantly, the estimate for rg between risk of IBS, anxiety, N, and depression was >0.5 and suggested genetic pleiotropy without evidence for causal mechanisms. Findings on the adrenergic pharmacology of the colon, coupled with new understanding of the role of the locus ceruleus in modifying afferent information from this organ, generate hypotheses that challenge traditional cause/effect notions about the relationship of the central nervous system to peripheral events in response to stress, suggest specific targets for gene action in the Maudsley model and emphasize the value of reciprocal evaluation of genetic architecture underlying N in rodents and humans.
Interstitial cystitis/painful bladder syndrome (IC) is a chronic pelvic pain condition which has high comorbidity with other nociplastic, or unexplained, pain disorders [e.g. fibromyalgia (FM), irritable bowel syndrome (IBS), and myalgic encephalomyelitis/chronic fatigue (ME/CFS)] and some psychiatric conditions [major depressive disorder (MDD) and panic disorder (PD)]. Here we investigated the shared familiality of IC and these other nociplastic and psychiatric conditions.
Methods
Subjects were identified in the Utah Population Database, which links genealogy data back to the 1800s to medical record diagnosis billing code data back to 1995. We computed the relative risk of each of these disorders among first (FDR), second (SDR), and third-degree relatives (TDR) of six proband groups: IC, FM, IBS, ME/CFS, PD, and MDD. Given the known familial aggregation of each of these disorders, we conducted our analyses to test for heritable interrelationships using proband subgroups whose members did not have the diagnosis assessed in their relatives.
Results
We observed strong evidence for heritable interrelationships among all six disorders. Most analyses indicated significantly increased risk for each of the six disorders in FDR, SDR, and TDR of all or most proband groups. Out of 30 possible bidirectional disorder interrelationships, 26 were significant among FDR, 23 were significant among SDR, and 7 were significant among TDR. Clustering was observed in both close and distant relatives.
Conclusions
Our results support a common, heritable component to IC and other nociplastic and psychiatric conditions.