Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T05:53:04.943Z Has data issue: false hasContentIssue false

Nonhuman sequence learning findings argue against Hoerl and McCormack's two systems of temporal cognition

Published online by Cambridge University Press:  12 December 2019

Benjamin J. De Corte
Affiliation:
Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA52242benjamin-decorte@uiowa.eduhttps://scholar.google.com/citations?user=sfMWDHsAAAAJ&hl=en
Edward A. Wasserman
Affiliation:
Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA52242. ed-wasserman@uiowa.eduhttps://psychology.uiowa.edu/comparative-cognition-laboratory

Abstract

Hoerl & McCormack propose that animals learn sequences through an entrainment-like process, rather than tracking the temporal addresses of each event in a given sequence. However, past research suggests that animals form “temporal maps” of sequential events and also comprehend the concept of ordinal position. These findings suggest that a clarification or qualification of the authors’ hypothesis is needed.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arcediano, F. & Miller, R. R. (2002) Some constraints for models of timing: A temporal coding hypothesis perspective. Learning and Motivation 33:105–23.CrossRefGoogle Scholar
Balsam, P. D. & Gallistel, C. R. (2009) Temporal maps and informativeness in associative learning. Trends in Neurosciences 32:7378.CrossRefGoogle ScholarPubMed
Chen, S., Swartz, K. B. & Terrace, H. S. (1997) Knowledge of the ordinal position of list items in rhesus monkeys. Psychological Science 8:8086.CrossRefGoogle Scholar
Clayton, N. S. & Dickinson, A. (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395(6699):272–74. doi:10.1038/26216.CrossRefGoogle ScholarPubMed
Honig, W. K. (1981) Working memory and the temporal map. In: Information Processing in Animals: Memory mechanisms, ed. Spear, N. & Miller, R., pp. 167–99. Brill.Google Scholar
Killeen, P. R. & Fetterman, J. G. (1988) A behavioral theory of timing. Psychological Review 95:274295.CrossRefGoogle ScholarPubMed
Matzel, L. D., Held, F. P. & Miller, R. R. (1988) Information and expression of simultaneous and backward associations: Implications for contiguity theory. Learning and Motivation 19:317344.CrossRefGoogle Scholar
Molet, M., Miguez, G., Cham, H. X. & Miller, R. R. (2012) When does integration of independently acquired temporal relationships take place? Journal of Experimental Psychology: Animal Behavior Processes 38:369–80.Google ScholarPubMed
Molet, M. & Miller, R. R. (2014) Timing: An attribute of associative learning. Behavioural Processes 101:414.CrossRefGoogle ScholarPubMed
Orlov, T., Yakovlev, V., Amit, D., Hochstein, S. & Zohary, E. (2002) Serial memory strategies in macaque monkeys: Behavioral and theoretical aspects. Cerebral Cortex 12:306–17.CrossRefGoogle ScholarPubMed
Orlov, T., Yakovlev, V., Hochstein, S. & Zohary, E. (2000) Macaque monkeys categorize images by their ordinal number. Nature 404:7780.CrossRefGoogle ScholarPubMed
Roberts, W. A. (2002) Are animals stuck in time? Psychological Bulletin 128(3):473–89. doi:10.1037//0033-2909.128.3.473.CrossRefGoogle ScholarPubMed
Taylor, K. M., Joseph, V., Zhao, A. S. & Balsam, P. D. (2014) Temporal maps in appetitive Pavlovian conditioning. Behavioural Processes 101:1522.CrossRefGoogle ScholarPubMed