Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T08:46:03.501Z Has data issue: false hasContentIssue false

Thinking about time and number: An application of the dual-systems approach to numerical cognition

Published online by Cambridge University Press:  12 December 2019

Karoline Lohse
Affiliation:
Empirical Childhood Research, University of Potsdam, 14476Potsdam, Germany. lohsek@uni-potsdam.deesixtus@uni-potsdam.delonnemann@uni-potsdam.dewww.uni-potsdam.de/de/eki/mitarbeiterinnen/dr-karoline-lohse www.uni-potsdam.de/de/eki/mitarbeiterinnen/dr-elena-sixtus.html www.uni-potsdam.de/de/eki/mitarbeiterinnen/prof-dr-jan-lonnemann
Elena Sixtus
Affiliation:
Empirical Childhood Research, University of Potsdam, 14476Potsdam, Germany. lohsek@uni-potsdam.deesixtus@uni-potsdam.delonnemann@uni-potsdam.dewww.uni-potsdam.de/de/eki/mitarbeiterinnen/dr-karoline-lohse www.uni-potsdam.de/de/eki/mitarbeiterinnen/dr-elena-sixtus.html www.uni-potsdam.de/de/eki/mitarbeiterinnen/prof-dr-jan-lonnemann
Jan Lonnemann
Affiliation:
Empirical Childhood Research, University of Potsdam, 14476Potsdam, Germany. lohsek@uni-potsdam.deesixtus@uni-potsdam.delonnemann@uni-potsdam.dewww.uni-potsdam.de/de/eki/mitarbeiterinnen/dr-karoline-lohse www.uni-potsdam.de/de/eki/mitarbeiterinnen/dr-elena-sixtus.html www.uni-potsdam.de/de/eki/mitarbeiterinnen/prof-dr-jan-lonnemann

Abstract

Based on the notion that time, space, and number are part of a generalized magnitude system, we assume that the dual-systems approach to temporal cognition also applies to numerical cognition. Referring to theoretical models of the development of numerical concepts, we propose that children's early skills in processing numbers can be described analogously to temporal updating and temporal reasoning.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amalric, M. & Dehaene, S. (2016) Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences of the United States of America 113:4909–17. doi:10.1073/pnas.1603205113.CrossRefGoogle ScholarPubMed
Chen, Q. & Li, J. (2014) Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica 148:163–72. doi:10.1016/j.actpsy.2014.01.016.CrossRefGoogle ScholarPubMed
Dehaene, S. (1992) Varieties of numerical abilities. Cognition 44:142. doi:10.1016/0010-0277(92)90049-N.CrossRefGoogle ScholarPubMed
Fazio, L. K., Bailey, D. H., Thompson, C. A. & Siegler, R. S. (2014) Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology 123:5372. doi:10.1016/j.jecp.2014.01.013.CrossRefGoogle ScholarPubMed
Feigenson, L., Dehaene, S. & Spelke, E. (2004) Core systems of number. Trends in Cognitive Sciences 8:307–14. doi:10.1016/j.tics.2004.05.002.CrossRefGoogle Scholar
Fuson, K. C. (1988) Children's counting and concepts of number. Springer.CrossRefGoogle Scholar
Krajewski, K. & Schneider, W. (2009a). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction 19:513–26. doi:10.1016/j.learninstruc.2008.10.002.CrossRefGoogle Scholar
Krajewski, K. & Schneider, W. (2009b). Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology 103:516–31. doi:10.1016/j.jecp.2009.03.009.CrossRefGoogle Scholar
Le Corre, M., Van de Walle, G., Brannon, E. M. & Carey, S. (2006) Re-visiting the competence/performance debate in the acquisition of the counting principles. Cognitive Psychology 52:130–69. doi:10.1016/j.cogpsych.2005.07.002.CrossRefGoogle ScholarPubMed
Piazza, M. (2010) Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences 14:542–51. doi:10.1016/j.tics.2010.09.008.CrossRefGoogle ScholarPubMed
Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J. & De Smedt, B. (2017) Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science 20(3):e12372. doi:10.1111/desc.12372.CrossRefGoogle ScholarPubMed
Siegler, R. S. & Braithwaite, D. W. (2017) Numerical development. Annual Review of Psychology 68:187213. doi:10.1146/annurev-psych-010416-044101.CrossRefGoogle ScholarPubMed
Starr, A., Libertus, M. E. & Brannon, E. M. (2013) Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences of the United States of America 110:18116–20. doi:10.1073/pnas.1302751110.CrossRefGoogle Scholar
Walsh, V. (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7(11):483–88. doi:10.1016/j.tics.2003.09.002.CrossRefGoogle ScholarPubMed