No CrossRef data available.
Article contents
Thinking about time and number: An application of the dual-systems approach to numerical cognition
Published online by Cambridge University Press: 12 December 2019
Abstract
Based on the notion that time, space, and number are part of a generalized magnitude system, we assume that the dual-systems approach to temporal cognition also applies to numerical cognition. Referring to theoretical models of the development of numerical concepts, we propose that children's early skills in processing numbers can be described analogously to temporal updating and temporal reasoning.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2019
References
Amalric, M. & Dehaene, S. (2016) Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences of the United States of America 113:4909–17. doi:10.1073/pnas.1603205113.CrossRefGoogle ScholarPubMed
Chen, Q. & Li, J. (2014) Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica 148:163–72. doi:10.1016/j.actpsy.2014.01.016.CrossRefGoogle ScholarPubMed
Dehaene, S. (1992) Varieties of numerical abilities. Cognition 44:1–42. doi:10.1016/0010-0277(92)90049-N.CrossRefGoogle ScholarPubMed
Fazio, L. K., Bailey, D. H., Thompson, C. A. & Siegler, R. S. (2014) Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology 123:53–72. doi:10.1016/j.jecp.2014.01.013.CrossRefGoogle ScholarPubMed
Feigenson, L., Dehaene, S. & Spelke, E. (2004) Core systems of number. Trends in Cognitive Sciences 8:307–14. doi:10.1016/j.tics.2004.05.002.CrossRefGoogle Scholar
Krajewski, K. & Schneider, W. (2009a). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction 19:513–26. doi:10.1016/j.learninstruc.2008.10.002.CrossRefGoogle Scholar
Krajewski, K. & Schneider, W. (2009b). Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology 103:516–31. doi:10.1016/j.jecp.2009.03.009.CrossRefGoogle Scholar
Le Corre, M., Van de Walle, G., Brannon, E. M. & Carey, S. (2006) Re-visiting the competence/performance debate in the acquisition of the counting principles. Cognitive Psychology 52:130–69. doi:10.1016/j.cogpsych.2005.07.002.CrossRefGoogle ScholarPubMed
Piazza, M. (2010) Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences 14:542–51. doi:10.1016/j.tics.2010.09.008.CrossRefGoogle ScholarPubMed
Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J. & De Smedt, B. (2017) Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science 20(3):e12372. doi:10.1111/desc.12372.CrossRefGoogle ScholarPubMed
Siegler, R. S. & Braithwaite, D. W. (2017) Numerical development. Annual Review of Psychology 68:187–213. doi:10.1146/annurev-psych-010416-044101.CrossRefGoogle ScholarPubMed
Starr, A., Libertus, M. E. & Brannon, E. M. (2013) Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences of the United States of America 110:18116–20. doi:10.1073/pnas.1302751110.CrossRefGoogle Scholar
Walsh, V. (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7(11):483–88. doi:10.1016/j.tics.2003.09.002.CrossRefGoogle ScholarPubMed
Target article
Thinking in and about time: A dual systems perspective on temporal cognition
Related commentaries (33)
A dual-systems perspective on temporal cognition: Implications for the role of emotion
A theory stuck in evolutionary and historical time
Animals are not cognitively stuck in time
Are counterfactuals in and about time?
Beings in the moment
Closing the symbolic reference gap to support flexible reasoning about the passage of time
Dual systems for all: Higher-order, role-based relational reasoning as a uniquely derived feature of human cognition
From temporal updating to temporal reasoning: Developments in young children's temporal representations
Future-oriented objects
Identity-based motivation and the paradox of the future self: Getting going requires thinking about time (later) in time (now)
Let's call a memory a memory, but what kind?
Limitations of Hoerl and McCormack's dual systems model of temporal consciousness
Locating animals with respect to landmarks in space-time
Locating the contradiction in our understanding of time
Neural correlates of temporal updating and reasoning in association with neuropsychiatric disorders
No doing without time
Nonhuman sequence learning findings argue against Hoerl and McCormack's two systems of temporal cognition
On believing that time does not flow, but thinking that it seems to
On the human uniqueness of the temporal reasoning system
Problems with the dual-systems approach to temporal cognition
Temporal representation and reasoning in non-human animals
Temporal updating, behavioral learning, and the phenomenology of time-consciousness
The dual systems in temporal cognition: A spatial analogy
The “now moment” is believed privileged because “now” is when happening is experienced
Thinking about the past as the past for the past's sake: Why did temporal reasoning evolve?
Thinking about thinking about time
Thinking about time and number: An application of the dual-systems approach to numerical cognition
Time, flow, and space
Timers from birth: Early timing abilities exceed limits of the temporal updating system
Two challenges for a dual system approach to temporal cognition
Updating and reasoning: Different processes, different models, different functions
Updating the dual systems model of temporal cognition: Reasoning with dynamic systems theory
What time words teach us about children's acquisition of the temporal reasoning system
Author response
Temporal updating, temporal reasoning, and the domain of time