Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:22:46.376Z Has data issue: false hasContentIssue false

From the trajectory of heritability to the heritability of trajectories

Published online by Cambridge University Press:  13 September 2022

Rogier A. Kievit
Affiliation:
Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlandsrogier.kievit@radboudumc.nl
Jessica A. Logan
Affiliation:
Department of Educational Studies, The Ohio State University, Columbus, OH 43210, USAlogan.251@osu.edu
Sara A. Hart
Affiliation:
Department of Psychology, Florida State University, Tallahassee, FL 32308, USAsahart@fsu.edu Department of Psychology, Florida Center for Reading Research, Florida State University, Tallahassee, FL 32310, USA.

Abstract

Although compelling and insightful, the proposal by Uchiyama et al. largely neglects within-person change over time, arguably the central topic of interest within their framework. Longitudinal behavioural genetics modelling suggests that the heritability of trajectories is low, in contrast to high and increasing cross-sectional heritability across development. Better understanding of the mechanisms of trajectories remains a crucial outstanding challenge.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Finkel, D., Davis, D. W., Turkheimer, E., & Dickens, W. T. (2015). Applying biometric growth curve models to developmental synchronies in cognitive development: The Louisville twin study. Behavior Genetics, 45(6), 600609. doi: 10.1007/s10519-015-9747-1CrossRefGoogle ScholarPubMed
Finkel, D., & Pedersen, N. L. (2004). Processing speed and longitudinal trajectories of change for cognitive abilities: The Swedish adoption/twin study of aging. Aging Neuropsychology and Cognition, 11(2–3), 325345. doi: 10.1080/13825580490511152CrossRefGoogle Scholar
Hart, S. A., Logan, J. A., Soden-Hensler, B., Kershaw, S., Taylor, J., & Schatschneider, C. (2013). Exploring how nature and nurture affect the development of reading: An analysis of the Florida twin project on reading. Developmental Psychology, 49(10), 1971. doi: 10.1037/a0031348CrossRefGoogle ScholarPubMed
Hatoum, A. S., Rhee, S. H., Corley, R. P., Hewitt, J. K., & Friedman, N. P. (2018). Etiology of stability and growth of internalizing and externalizing behavior problems across childhood and adolescence. Behavior Genetics, 48(4), 298314. doi: 10.1007/s10519-018-9900-8CrossRefGoogle ScholarPubMed
Logan, J. A., Hart, S. A., Cutting, L., Deater-Deckard, K., Schatschneider, C., & Petrill, S. (2013). Reading development in young children: Genetic and environmental influences. Child Development, 84(6), 21312144. doi: 10.1111/cdev.12104CrossRefGoogle ScholarPubMed
Lyons, M. J., Panizzon, M. S., Liu, W., McKenzie, R., Bluestone, N. J., Grant, M. D., … Xian, H. (2017). A longitudinal twin study of general cognitive ability over four decades. Developmental Psychology, 53(6), 1170. doi: 10.1037/dev0000303CrossRefGoogle ScholarPubMed
Molenaar, P. C. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201218. doi: 10.1207/s15366359mea0204_1Google Scholar
Olsen, C. M., Pandeya, N., Law, M. H., MacGregor, S., Iles, M. M., & Thompson, B. S., … QSkin Study. (2020). Does polygenic risk influence associations between sun exposure and melanoma? A prospective cohort analysis. British Journal of Dermatology, 183(2), 303310. doi: 10.1111/bjd.18703CrossRefGoogle ScholarPubMed
Reynolds, C. A., Finkel, D., Gatz, M., & Pedersen, N. L. (2002). Sources of influence on rate of cognitive change over time in Swedish twins: An application of latent growth models. Experimental Aging Research, 28(4), 407433. doi: 10.1080/03610730290103104CrossRefGoogle ScholarPubMed