We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using the technique of Gabor analysis, we characterize the boundedness of $e^{i\Delta }: W^{p_1,q_1}_m\rightarrow W^{p_2,q_2}$ with modulation and translation operators, where and m is a v-moderate weight. The sharp exponents for the boundedness are also characterized in the case of power weight.
We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional torus, in the case where the spectral window is narrow. Bounds for their L2 to Lp operator norm are derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector is introduced. The methods employed include $\ell^2$ decoupling, small cap decoupling and estimates of exponential sums.
In this paper, we obtain the $H^{p_1}\times H^{p_2}\times H^{p_3}\to H^p$ boundedness for trilinear Fourier multiplier operators, which is a trilinear analogue of the multiplier theorem of Calderón and Torchinsky [4]. Our result improves the trilinear estimate in [22] by additionally assuming an appropriate vanishing moment condition, which is natural in the boundedness into the Hardy space $H^p$ for $0<p\le 1$.
Let H be the Hermite operator $-\Delta +|x|^2$ on $\mathbb {R}^n$. We prove a weighted $L^2$ estimate of the maximal commutator operator $\sup _{R>0}|[b, S_R^\lambda (H)](f)|$, where $ [b, S_R^\lambda (H)](f) = bS_R^\lambda (H) f - S_R^\lambda (H)(bf) $ is the commutator of a BMO function b and the Bochner–Riesz means $S_R^\lambda (H)$ for the Hermite operator H. As an application, we obtain the almost everywhere convergence of $[b, S_R^\lambda (H)](f)$ for large $\lambda $ and $f\in L^p(\mathbb {R}^n)$.
In this work, we obtain the pointwise almost everywhere convergence for two families of multilinear operators: (a) the doubly truncated homogeneous singular integral operators associated with $L^q$ functions on the sphere and (b) lacunary multiplier operators of limited smoothness. The a.e. convergence is deduced from the $L^2\times \cdots \times L^2\to L^{2/m}$ boundedness of the associated maximal multilinear operators.
is set up, where β > 1 or β < 0, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ and $\frac{1}{2}\lt r\lt\infty$, p > 1 and q > 1. The result for the case β < 0 extends the $L^\infty\times L^2\to L^2$ boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear oscillatory integral along parabolas, Positivity 13(2) (2009), 339–366) by confirming an open question raised in it.
We investigate norms of spectral projectors on thin spherical shells for the Laplacian on tori. This is closely related to the boundedness of resolvents of the Laplacian and the boundedness of $L^{p}$ norms of eigenfunctions of the Laplacian. We formulate a conjecture and partially prove it.
We prove
$L^{p}$
-boundedness of oscillating multipliers on symmetric spaces of noncompact type of arbitrary rank, as well as on a wide class of locally symmetric spaces.
Let M(u), H(u) be the maximal operator and Hilbert transform along the parabola (t, ut2). For U ⊂ (0, ∞) we consider Lp estimates for the maximal functions sup u∈U|M(u)f| and sup u∈U|H(u)f|, when 1 < p ≤ 2. The parabolas can be replaced by more general non-flat homogeneous curves.
Let φ : ℝn × [0, ∞) → [0, ∞) satisfy that φ(x, · ), for any given x ∈ ℝn, is an Orlicz function and φ( · , t) is a Muckenhoupt A∞ weight uniformly in t ∈ (0, ∞). The (weak) Musielak–Orlicz Hardy space Hφ(ℝn) (WHφ(ℝn)) generalizes both the weighted (weak) Hardy space and the (weak) Orlicz Hardy space and hence has wide generality. In this paper, two boundedness criteria for both linear operators and positive sublinear operators from Hφ(ℝn) to Hφ(ℝn) or from Hφ(ℝn) to WHφ(ℝn) are obtained. As applications, we establish the boundedness of Bochner–Riesz means from Hφ(ℝn) to Hφ(ℝn), or from Hφ(ℝn) to WHφ(ℝn) in the critical case. These results are new even when φ(x, t): = Φ(t) for all (x, t) ∈ ℝn × [0, ∞), where Φ is an Orlicz function.
We study the regularity of convolution powers for measures supported on Salem sets, and
prove related results on Fourier restriction and Fourier multipliers. In particular we show that for
$\alpha $ of the form $d\,/\,n,\,n\,=\,2,3,...$ there exist $\alpha $-Salem measures for which the ${{L}^{2}}$ Fourier restriction theorem holds in the range $p\,\le \,\frac{2d}{2d\,-\,\alpha }$. The results rely on ideas of Körner. We extend some of his constructions to obtain upper regular $\alpha $-Salem measures, with sharp regularity results for $n$-fold
convolutions for all $n\,\in \,\mathbb{N}$.
In this paper we study sharp localized ${{L}^{q}}\,\to \,{{L}^{p}}$ estimates for Fourier multipliers resulting from modulation of the jumps of Lévy processes. The proofs of these estimates rest on probabilistic methods and exploit related sharp bounds for differentially subordinated martingales, which are of independent interest. The lower bounds for the constants involve the analysis of laminates, a family of certain special probability measures on 2×2 matrices. As an application, we obtain new sharp bounds for the real and imaginary parts of the Beurling–Ahlfors operator.
We show results on Lp-spectral multipliers for Maxwell operators with bounded measurable coefficients. We also present similar results for the Stokes operator with Hodge boundary conditions and the Lamé system. Here, we rely on resolvent estimates recently established by Mitrea and Monniaux.
In this paper, the authors characterize pointwise multipliers for Campanato spaces on the Gauss measure space (ℝn,| · |,γ), which includes BMO(γ) as a special case. As applications, several examples of the pointwise multipliers are given. Also, the authors give an example of a nonnegative function in BMO(γ) but not in BLO(γ).
New transference results for Fourier multiplier operators defined by regulated symbols are presented. We prove restriction and extension of multipliers between weighted Lebesgue spaces with two different weights, which belong to a class more general than periodic weights, and two different exponents of integrability that can be below one.
We also develop some ad-hoc methods that apply to weights defined by the product of periodic weights with functions of power type. Our vector-valued approach allows us to extend our results to transference of maximal multipliers and provide transference of Littlewood–Paley inequalities.
In this paper we prove a certain ${{L}^{2}}$-estimate for multilinear Fourier multiplier operators with multipliers of limited smoothness. As a consequence, we extend the result of Calderón and Torchinsky in the linear theory to the multilinear case. The sharpness of our results and some related estimates in Hardy spaces are also discussed.
We show that the multiplier algebra of the Fourier algebra on a locally compact group $G$ can be isometrically represented on a direct sum on non-commutative ${{L}^{p}}$ spaces associated with the right von Neumann algebra of $G$. The resulting image is the idealiser of the image of the Fourier algebra. If these spaces are given their canonical operator space structure, then we get a completely isometric representation of the completely bounded multiplier algebra. We make a careful study of the noncommutative ${{L}^{p}}$ spaces we construct and show that they are completely isometric to those considered recently by Forrest, Lee, and Samei. We improve a result of theirs about module homomorphisms. We suggest a definition of a Figa-Talamanca–Herz algebra built out of these non-commutative ${{L}^{p}}$ spaces, say ${{A}_{p}}(\hat{G})$. It is shown that ${{A}_{2}}(\hat{G})$ is isometric to ${{L}^{1}}(G)$, generalising the abelian situation.
Via a random construction we establish necessary conditions for $L^p (\ell^q)$ inequalities for certain families of operators arising in harmonic analysis. In particular, we consider dilates of a convolution kernel with compactly supported Fourier transform, vector maximal functions acting on classes of entire functions of exponential type, and a characterization of Sobolev spaces by square functions and pointwise moduli of smoothness.
In this paper, we study the ${{L}^{p}}$ mapping properties of a class of singular integral operators with rough kernels belonging to certain block spaces. We prove that our operators are bounded on ${{L}^{p}}$ provided that their kernels satisfy a size condition much weaker than that for the classical Calderón–Zygmund singular integral operators. Moreover, we present an example showing that our size condition is optimal. As a consequence of our results, we substantially improve a previously known result on certain maximal functions.