We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sulfonated carbon is a green, solid acid catalyst but its surface area, separation, and recovery after utilization need to be improved. The objective of the present study was to provide an environmentally friendly and economical method to prepare magnetic sulfonated carbon composite catalyst with a large surface area using palygorskite (Plg) as the support. A magnetic sulfonated carbon/Fe3O4/Plg composite catalyst was prepared via simultaneous calcination and sulfonation of the mixture of source, p-toluenesulfonic acid (TsOH), and Fe3O4/Plg. Fe3O4 nanoparticles and Plg nanorods were encased by a carbon layer derived from sucrose and TsOH. The composite catalyst exhibited good magnetic properties and high catalytic performance for the esterification of oleic acid with methanol. Oleic acid conversion reached 88.69% after the first catalytic cycle. Plg nanorods replaced sucrose and increased the catalyst’s surface area. The introduction of Fe3O4 nanoparticles improved further the acid content and oleic-acid conversion and achieved 70.31% after five cycles. The catalyst was recycled easily using an external magnetic field and its magnetic property remained unchanged due to the protection of the carbon layer.
The gravity and magnetic survey methods have been in use since the early days of geophysical prospecting for petroleum. They find most application in frontier exploration. In that context, regional and global datasets are often available to assist with early evaluations.
The design and execution of modern, targeted surveys has been transformed as a result of advances in instruments and the advent of satellite navigation. Imaging and interpretive techniques have been transformed by modern computer-based approaches. The potential field methods are extremely cost-effective at delineation of basins and determining structural controls on those basins, especially delineating normal faulting within rift basins. Magnetic surveys yield depth to basement and delineate any igneous rocks present. Such surveys therefore enable early decisions about cost-effective placement of seismic surveys and other intensive follow-ups.
In more mature exploration, gravity and gravity gradient data combine well with seismic data in distinguishing between alternate interpretations, thereby removing ambiguities. High-resolution magnetic data offer an effective means of fault connection in conjunction with regional seismic coverage, if shales or mudstones are present.
In a production environment, gravity logging is the most sensitive density log available, and 4D-gravity finds application in gas production and also water-flood monitoring.
Three-dimensional porous materials with the hydrophobic/oleophilic surface have attracted significant interest in the fields of oil/water separation. In this paper, superhydrophobic magnetic polyurethane sponge was fabricated by the self-polymerization of dopamine to bind the Fe3O4 nanoparticles tightly on the sponge and then soaking in cheap stearic acid aqueous solution. The obtained sponge has the superhydrophobic property and good magnetic property. The surface structure, composition, and properties of the modified sponges were characterized by scanning electron microscopy, energy dispersive spectrometer, Fourier-transform infrared spectrum, and water contact angle (WCA) measurements. The as-prepared superhydrophobic magnetic sponge was able to collect a wide range of oils and organic solvents from oil–water mixture with an absorption capacity up to 16–60 times of its own weight. Under an external magnetic field, it can be guided to a designated area. In addition, combined with the vacuum system, continuous oil separation can be carried out, which is of great significance for removing a good deal of dirty oil on the water surface. Furthermore, the WCA of sponge remains above 141°, and the oil absorption is basically unchanged through repeated cyclic experiments.
Herein, we report a synthetic route capable of producing superparamagnetic, stable and biocompatible glucosamine (GLU) nanocarriers, composed by colloidal iron oxide nanoparticles (ION, ~6 nm) surface-functionalized with GLU dispersed in physiological media (pH 7.2). The route consists first of the preparation of ION by aqueous alkaline co-precipitation of 1:2 Fe(II)/Fe(III) followed by surface treatment with citric acid, activation of acidic groups via carbodiimide intermediary and further amidation using GLU as the amine reactant. Results from cell viability tests performed with human dental pulp tissue cells suggest that ION–GLU nanocolloids are biocompatible and non-toxic for two different concentrations and several hours of incubation. Moreover, optical microscopy shows that ION–GLU adsorbs at the cells walls and also transposes them, reaching cytoplasm and nucleus as well. All findings point out the promising use of ION–GLU as biocompatible nanocarriers for GLU delivery such as in articulation diseases.
The quality of the polymer raw material used in plastic processing methods is an important characteristic because it is one of the main factors in producing quality products. Therefore, the characterization of polymeric pellets in the polymer processing industry is very important to avoid using inferior materials. In general, differences in the interiors of polymeric pellets reflect differences in their densities. In this study, a high-sensitivity magnetic levitation method was used to characterize the polymeric pellets in four different occasions. The device used has a high sensitivity that can distinguish minute differences as small as of 0.0041 g/cm3 in density between different samples. In addition, the method can obtain a sample's density without knowing the weight and volume of the sample. This method can be used to characterize materials by testing only a single pellet, which is very useful for polymeric pellet characterization.
Methods that allow for high-throughput synthesis of magnetic nanoparticles are necessary to more feasibly fabricate materials for real-world applications. To accomplish this, in this article, we describe a versatile electrospray-based synthesis method for the synthesis of magnetic cobalt ferrite nanoparticles. This method has the potential to be readily scaled up using methods similar to those currently used in place for the large-scale electrospinning of fibers. To mitigate film formation as often seen with electrospraying ceramics onto a flat plate collector, we developed a method where the magnetic cobalt ferrite nanoparticles were electrosprayed into a silicone oil–based liquid collector. The as-sprayed particles were then crystalized by salt calcining with sodium chloride at 800 °C. The synthesized magnetic nanoparticles obtained using this method had an average particle diameter of 20.7 ± 11.5 nm. This liquid collection method for the synthesis of cobalt ferrite also presents a versatile platform for the synthesis of a wide range of functional nanomaterials and nanocomposites.
This paper presents shape-memory foams that can be temporarily fixed in their compressed state and be expanded on demand. Highly porous, nanocomposite foams were prepared from a solution of polyetherurethane with suspended nanoparticles (mean aggregate size 90 nm) which have an iron(III) oxide core with a silica shell. The polymer solution with suspended nanoparticles was cooled down to -20 °C in a two-stage process, which was followed by freeze-drying. The average pore size increases with decreasing concentration of nanoparticles from 158 µm to 230 µm while the foam porosity remained constant. After fixation of a temporary form of the nanocomposite foams, shape recovery can be triggered either by heat or by exposure to an alternating magnetic field. Compressed foams showed a recovery rate of up to 76 ± 4% in a thermochamber at 80 °C, and a slightly lower recovery rate of up to 65 ± 4% in a magnetic field.
This work studied the relationship between embedded particle volume fraction and magnetic particle orientation distribution in aligned 325 mesh barium hexaferrite (BHF) and polydimethylsiloxane (Sylgard 184; Dow Corning) magnetoactive elastomer (MAE) composites. BHF particles were aligned within the elastomer in the out-of-plane direction, as the material cured. Particle orientation distribution was defined herein by observations of the population of directions at which particle magnetizations resided; magnetization coincides with the physical crystallographic c-axis of BHF. The work used results of vibrating sample magnetometry experiments on MAEs with increasing volume concentrations of embedded ferromagnetic particles (10–30 v/v%) to determine changing widths of analytical particle distribution functions used to describe the range of particle orientations. With over 80% confidence, results showed that MAE composites having the intermediate 15 v/v% had the highest degree of magnetic (and thereby physical) alignment as well as magnetic remanence.
Magnetic skyrmions are particle-like, topologically protected magnetization entities that are promising candidates for information carriers in racetrack-memory schemes. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Recently, we demonstrated experimentally that chiral skyrmions in Cu2OSeO3 can be effectively manipulated by a magnetic field gradient, leading to a collective rotation of the skyrmion lattice with well-defined dynamics in a radial field gradient. Here, we employ a skyrmion particle model to numerically study the effects of resultant shear forces on the structure of the skyrmion lattice. We demonstrate that anisotropic peak broadening in experimentally observed diffraction patterns can be attributed to extended linear regions in the magnetic field profile. We show that topological (5-7) defects emerge to protect the six-fold symmetry of the lattice under the application of local shear forces, further enhancing the stability of proposed magnetic field driven devices.
Bar codes and quick response codes are the standard methods of visual data storage. These codes rely on changes in visual patterns to encode data into a binary format. Problems with these methods include limited data storage capacity and poor visual appeal in product marketing. This work examined magnetic patterns as an alternative to visual patterns as a potential means to encode data. Using magnetic patterns it is theorized that data storage capacity can be improved, while embedding the code within a tagged object. Magnetic patterns were formed using neodymium magnets, which yielded results that are similar to a bar code. Lines of high magnetic field strength followed by regions of low magnetic field strength at different spacing produced different overall magnetic patterns. Next, magnetic patterns were 3-dimensionally printed using an iron and polylactic acid commercial filament. The effect of infill density and the print line of the magnetic regions were studied by measuring the attractive force between the sample and a neodymium magnet attached to a force gauge for different print configurations. As expected the infill density of 100% had the highest force, which was roughly 330 mN, while the 10% sample had the lowest force being about 120 mN. It was expected that print line should not have an influence on magnetic force, but in this experiment magnetic regions with print lines at 0° were about 10 mN higher than samples printed at 90°. The cause of this was likely due to the printer error. Future work will study print plane, which is another processing variable in 3-dimensional printing. The target goal of matching the data storage capability of QR codes will also be work towards.
Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magneto-mechanical actuators which are based on a single crystalline domain of oligo(ω-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility.
In recent decades, increasing research interest has shifted from traditional rigid skeleton robotics to flexible, shape-programmable, environmentally adaptive and stimuli-responsive “soft robotics”. Within this discipline, soft-robots capable of untethered and/or remote-controlled operation are of particular interest given their utility for actuation in complex situations with larger range of mobility and higher degrees of freedom. The use of new materials and the development of advanced fabrication techniques enable better performance and expand the utility of such soft actuators, moving them towards real-world applications. This review outlines some recent advances in untethered soft robotics and actuators to illustrate the promise of these applications at the interface of material science and device engineering.
Chainmail fabrics manufactured by selective laser sintering 3D printing have been magnetically functionalized to create a lightweight, 4D printed, actuating fabric. The post-processing method involves submerging the porous prints in commercial ferrofluid (oil-based magnetic liquid), followed by drying under heat. The actuation of the chainmail has been simulated using a rigid multi-body physics engine, and qualitatively matches experiment. Such magnetically actuating fabrics have potential to make thin, lightweight and comfortable wearable assistive devices.
Strain-mediated magnetoelectric coupling provides a powerful method for controlling nanoscale magnetism with an electric voltage. This article reviews the initial use of macroscale composites and subsequent experimental control of magnetic thin films, nanoscale heterostructures, and single domains. The discussion highlights several characteristics enabling small, fast, and energy-efficient technologies. The second section covers applications where strain-mediated magnetoelectricity has been used, with emphasis on the storage, transmission, and processing of information (i.e., memory, antenna, and logic devices). These advances are order-of-magnitude improvements over conventional technologies, and open up exciting new possibilities.
Strong strain-mediated magnetoelectric (ME) coupling in magnetic/ferroelectric heterostructures has great potential for different high-frequency multiferroic devices. In this article, we present the most recent progress in integrated multiferroic devices. Integrated magnetic tunable inductors with a wide operation frequency range, integrated nonreciprocal bandpass filters with dual magnetic and electric-field tunability based on magnetostatics surface waves, and novel radio-frequency nanomechanical ME resonators with pico-Tesla sensitivity for direct current magnetic fields are presented. Finally, a new antenna miniaturization mechanism, acoustically actuated nanomechanical ME antennas, which can successfully miniaturize the size by 1–2 orders, is introduced. With the advantages of high magnetic field sensitivity, highest antenna gain among all nanoscale antennas at similar frequency, integrated capability with complementary metal oxide semiconductor technology, and ground-plane immunity from metallic surfaces and the human body, ME antennas have a bright future for biomedical applications, wearable antennas, and the Internet of Things due to their unique and particular properties.
Magnetoelectric (ME) materials exhibit cross-coupling effects between magnetization and polarization, by which one can manipulate the magnetization (or polarization) with an electric (or magnetic) field. To better understand the responses of ME materials and the coupling mechanisms involved, various simulation methods at different scales, ranging from electronic and atomic scale to the mesoscale, have been developed in the past decades. In this article, we summarize recent progress in modeling and predicting responses of ME materials, and present our perspectives on key issues that require further study, including multiscale simulation methods and approaches dealing with dynamic processes. The simulation methods have the potential to illuminate the dynamic processes in ME materials and device response to external fields and eventually be used for guidance for the data-driven computational design of new ME materials and devices.
The soft magnetic alloy Fe–Co–2V, also known as Permendur-2V or Hiperco® 50A, was subjected to equal channel angular extrusion (ECAE) at 750–850 °C using two processing routes. Hiperco is a trade name of Carpenter Technology Corporation. ECAE, which is a severe plastic deformation process, refined the grain size to about 1.5–3 μm, compared to 25–70 μm for the conventional Hiperco® bar. The fine-grain microstructure is homogenous throughout the ECAE material, from center to edge, due to the simple-shear ECAE process. Fine-grained Hiperco® has previously only been obtainable in the sheet form. ECAE resulted in yield and tensile strengths of 650–700 MPa and 900–1400 MPa, respectively, representing a 2–3-fold strength increase compared to the conventional bar. The yield strength was demonstrated to fit well to the Hall–Petch relationship established using previous reports on the strength of conventional bar and sheet materials. High ductility, up to 18%, was obtained in the ECAE processed billets and attributed primarily to the partially disordered bcc crystal structure upon quenching from ECAE.
Significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/FexOy core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of the resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.
Magnetocaloric heat pumps (MHPs) use the solid-state magnetocaloric effect (MCE) to move heat from cold to hot using an intermediate heat-transfer fluid. Work input is required to drive the MCE via a change in a magnetic field. Work input is also required to drive the heat-transfer fluid flow. Thus design of a MHP involves the coupling of materials, magnetics, heat transfer, and fluid flow. We discuss design principles and operational devices that have brought this technology toward technical feasibility, and the approaches to overcome remaining hurdles to commercial feasibility.
Multicaloric materials show thermal changes that can be driven simultaneously or sequentially by more than one type of external field. The use of more than one driving field can induce larger thermal changes, with smaller field magnitudes, over wider ranges of operating temperature, and can also eliminate hysteresis in one control parameter by transferring it to another. The thermodynamics behind multicaloric effects is well established, but only a small number of multicaloric materials have been experimentally studied to date. Here, we describe the fundamentals of multicaloric effects and discuss the performance of representative multicaloric materials. Exploiting multicaloric effects could aid the future development of cooling devices, where key challenges include energy efficiency and the span of the operating temperature.