We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bitter vetch (Vicia ervilia (L.) Willd) is a promising legume, drought tolerant, mainly used in the Mediterranean area for its grains as a source of proteins in animal feed. However, it is an underused crop cultivated in marginal soils. Ecological, agro-morphological, and bromatological diversity evaluations were conducted to study its reintroduction potential. Seeds of seventeen ecotypes were collected in seventeen farms located in Northern Morocco in 2018. The cultivation was realised during the 2019 and 2020 growing seasons using a randomised complete block design with three replicates. Agro-morphological data were collected at the start of flowering, full flowering, and pod setting phenological stages. Yield component assessment and grain and straw bromatological characterisation were performed at maturity. The results indicated significant variations between ecotypes for almost all parameters and interesting results about yield (1 t ha–1) but lower protein content (22.9% of dry matter) compared to other ecotypes of the Mediterranean region. The estimated genetic parameters could emphasise the possibility of selecting highly productive and nutritive cultivars. However, interannual variations were also detected, making the selection of the ecotypes harder. No significant correlations were observed between agro-morphological and bromatological traits of grains and geographical distances. Multivariate analyses (principal component analysis and heatmap) clustered ecotypes into five groups, where the ecotypes included in the second cluster were the most interesting candidates for developing high-yielding and nutritive varieties. That is why this plant could be considered of interest, especially in these times of climate change.
This chapter asks two questions, although it is the second which is crucial. You may be tempted to scratch your head: after all, the theme of this book is Our Changing Climate, and we have referred to the rise in atmospheric CO2 content over the past century, and the rise in temperature over the past 75 years, multiple times. So, aren’t these self-answering questions? No. Firstly, scientists do not stop at self-answering questions: they delve deeper. But the key reason is that global average surface temperature is only the most reported evidence of a changing climate. In this chapter we will dive into AR6 in order to find many more indicators of a changing climate. We will also interrogate our CMIP6 simulations to see if we really do understand the science behind such changes. That is to say, how much of the change(s) can we attribute to human actions?
To inform water quality monitoring techniques and modeling at coastal research sites, this study investigated seasonality and trends in coastal lagoons on the eastern shore of Virginia, USA. Seasonality was quantified with harmonic analysis of low-frequency time-series, approximately 30 years of quarterly sampled data at thirteen mainland, lagoon, and ocean inlet sites, along with 4–6 years of high-frequency, 15-min resolution sonde data at two mainland sites. Temperature, dissolved oxygen, and apparent oxygen utilization (AOU) seasonality were dominated by annual harmonics, while salinity and chlorophyll-a exhibited mixed annual and semi-annual harmonics. Mainland sites had larger seasonal amplitudes and higher peak summer values for temperature, chlorophyll-a and AOU, likely from longer water residence times, shallower waters, and proximity to marshes and uplands. Based on the statistical subsampling of high-frequency data, one to several decades of low-frequency data (at quarterly sampling) were needed to quantify the climatological seasonal cycle within specified confidence intervals. Statistically significant decadal warming and increasing chlorophyll-a concentrations were found at a sub-set of mainland sites, with no distinct geographic patterns for other water quality trends. The analysis highlighted challenges in detecting long-term trends in coastal water quality at sites sampled at low frequency with large seasonal and interannual variability.
Grey seals from both the Atlantic and Baltic Sea subspecies are recovering from dramatic declines and recolonising former ranges, potentially leading to overlapping distributions and an emerging subspecies transition zone in Kattegat between Denmark and Sweden. The two subspecies have asynchronous moulting and pupping seasons. We present aerial survey data from 2011 to 2023 in Danish Kattegat during the Atlantic subspecies' moulting (March–April) and pupping (December–January) seasons, as well as the Baltic subspecies' moulting season (May–June). During the Atlantic subspecies' peak moulting season, 82% of the grey seals were recorded north of the island of Læsø (N57°18′, E11°00′). In contrast, during the Baltic moulting season in those years, only 9% of the grey seals were recorded here. This indicates a predominance of Atlantic grey seals in the north and Baltic grey seals in central and southern Kattegat. In 2022 and 2023, three pups were recorded around Læsø during early January, which coincides with the pupping season of northern Wadden Sea grey seals. Previously, pups have been recorded in the same locations during the Baltic pupping season, which demonstrates overlapping breeding ranges. Grey seals are known to have plasticity in the timing of pupping indicated by a west to east cline of progressively later pupping in the eastern North Atlantic. Historical sources document that the Baltic pupping season in Kattegat was earlier than it has been in recent years. Thus, the expanding ranges may be associated with convergence of Atlantic and Baltic subspecies' pupping seasons and potential hybridisation in this emerging transition zone.
A proportion of the southern elephant seal (Mirounga leonina) population that breeds in the Kerguelen Plateau region seasonally migrates between their natal sub-Antarctic islands and moult haul-out locations on the Antarctic coastline. Analyses of survey data collated for one moult location at the Vestfold Hills, East Antarctica, showed that there had been no appreciable change in the timing (phenology) of maximum seal arrivals between 1974 and 2022; however, the maximum number of seals moulting at that site had declined by ~90% over the same time interval. Spatial analyses showed rates of population change were survey area dependent, as seal numbers decreased most rapidly at haul-out areas closest to the permanently occupied Davis Station, suggesting that a relationship exists between seal numbers and human activities. The range of potential factors that contribute to population change for southern elephant seals moulting at the Vestfold Hills includes changes in status at primary source populations, one of which has not been surveyed since the 1990s, and species relocation. Should numbers of southern elephant seals in the Vestfold Hills continue to decrease at the current average rate of change (-7.78 seals/year) the species could vanish from the area by c. 2040.
Analysing phenological diversity of tropical trees provides a potential tool to detect climate change effects and devise forest management options. In this study, the leaf phenological activity of 28 dominant tree species in a moist sub-tropical hill forest of north-eastern India was examined for a period of 2 years and related to functional traits (i.e. leaf mass per area (LMA) and wood density (WD)). The peak phase of leaf fall occurred in the cool dry period (November to January) with leaf flush peaking in the pre-monsoon period (February to March), but variation was found between species as influenced by their phenological strategy, i.e. evergreen, leaf-exchanging or deciduous (<4 months leafless). Photoperiod and minimum temperature were the environmental factors most strongly correlated with phenological activity, and the synchrony index within species for both phenophases was 0.81. LMA was less in the deciduous species compared with the evergreen species, whereas WD did not differ. LMA was negatively correlated with the length of deciduousness as well as timing of leaf flush and fall indicating that LMA may be more important than WD in influencing phenological patterns in this forest. The study revealed that the phenological diversity of tropical trees is related to changes in environmental variables and has implication for forest management under changing climate. Further study will help in understanding the phenological response of trees to climatic factors and their potential future changes.
Native Cirsium species play an important role in landscapes across North America. Hadroplontus litura (F.) (formerly Ceutorhynchus litura), the stem-mining weevil and biological control agent of Canada thistle [Cirsium arvense (L.) Scop.] can complete its life cycle on five Cirsium species native to the upper Midwest. Although these five Cirsium species are within the fundamental host range of H. litura, as determined by host-range tests, we wanted to explore whether phenological differences among Cirsium species help define the field ecological host range of H. litura. The objective of this study was to determine the phenology of Cirsium species native to the upper Midwest in relation to C. arvense and H. litura. Our goal was to explore whether shoots of native Cirsium species could escape H. litura shoot oviposition in spring due to delayed shoot emergence relative to C. arvense. Soil cumulative growing degree days (GDD) were a superior predictor of shoot emergence for perennial Cirsium species or initiation of leaves in biennial Cirsium species, with a 2.4 times larger effect on time to emergence relative to air GDD. All native Cirsium species initiated new leaves or shoots before C. arvense shoot emergence, even when native Cirsium species growth was delayed in the spring. In turn, C. arvense shoots emerged approximately 1 to 3 wk before female H. litura began to lay eggs. As such, all native Cirsium plants had shoots available for H. litura oviposition. There was no phenological separation between native Cirsium and C. arvense shoot emergence or initiation that would render native Cirsium species safe from H. litura attack. Based on the phenology of shoot emergence or initiation in the spring, all tested Cirsium species native to the upper Midwest would be within the ecological host range of H. litura.
Male and female dioecious tropical trees are subjected to distinct demands that may influence their ecology. An example is Myrianthus holstii Engl. that produces persistent fruit eaten by elephants and other large mammals that frequently damage the trees. Myrianthus holstii populations were assessed with 24 2-km transects, spanning an elevation range of 1435–2495 m in the Bwindi Impenetrable National Park in Uganda. Of 1089 stems ≥ 5 cm diameter 449 were female, 383 were male and the rest were non-fertile. We also noted one apparently monoecious individual. Males produced flowers at smaller sizes than did females (minimum recorded diameters 5.5 cm and 6.8 cm, respectively). Both sexes had similar distributions, favouring moderately closed forest and mid-slope locations. Female trees were more frequently damaged and typically slightly shorter than males at large diameters. Seedling densities were positively associated with the presence of larger female trees. Our results are consistent with a life history where both sexes have similar requirements, but fruiting females experience a greater frequency of severe damage.
The ‘a‘o, or Newell’s Shearwater Puffinus newelli, is an endangered shearwater species endemic to the Hawaiian Islands, with 90% of the world population found on Kaua‘i. Understanding the breeding phenology of the species is vital for identifying key periods for colony management actions and the timing and exposure frequency to infrastructure threats such as powerline collisions and light attraction. We used a combination of direct burrow monitoring and remote cameras at multiple colonies between 2012 and 2019 for a detailed assessment of the breeding phenology for this species. Breeding adults started arriving at the burrow in mid-April, some (but not all) underwent a two-week exodus in May and returned at the end of May to commence incubation. Incubation continued until mid-July. The chick-rearing period ran until the end of September. Fledging peaked in October with the last birds fledging towards the middle of November. Breeding was not synchronised, with a 59-day gap between the first and last fledging birds. The importance of this information to management actions is discussed, particularly in terms of directing management actions to key periods of vulnerability to introduced predators (such as peak incubation, chick emergence, and exercising prior to fledging), the precise timing of fledgling fallout related to light attraction, and directing colony-monitoring actions and translocation projects. We also consider the utility of the data in assessing species composition of powerline collisions and collision risk. Future work using acoustic monitoring is recommended for assessing the phenology of non-breeders and prospectors at colonies.
This chapter considers the shifting meanings and capacities of American and British seasonal literature and media in light of anthropogenic climate change. Via two case studies, it compares seasonal work before and after widespread concerns about altered seasonal patterns in the United States and Europe. Beginning with a discussion of the seasonal aspects of Rachel Carson’s writing – most notably her sea trilogy – and its literary contexts, this chapter examines seasonal prose produced prior to the climate crisis. It also reflects on contemporary scholars’ tendency to revisit Carson’s work when ruminating on climate change, suggesting a nostalgia for seasonal reassurance. The chapter then turns to the contemporary production of seasonal media, using the BBC series Springwatch as a second case study. Placing Springwatch within a British tradition of seasonal broadcasting, it analyses the intersection of environmental and cultural seasonality in this series. As a show produced during a period of heightened climate anxiety, Springwatch actively works to generate seasonal data for climate research in the United Kingdom. In this sense, seasonal media unfolding within – and responding to – perceptible season creep can route seasonal sentimentality into the observation of phenological change.
Trematodes are the main macroparasites in coastal waters. The most abundant and widespread form of these parasites is metacercaria. Their impact on their host fitness is considered relatively low but metacercarial larvae of some species can have deleterious effects on individuals and/or populations. This review focused on the cockle Cerastoderma edule and four species of the genus Himasthla; a common host–parasite system in marine coastal environments. Our aims were (1) to review literature concerning Himasthla continua, Himasthla elongata, Himasthla interrupta and Himasthla quissetensis in cockles; (2) to provide molecular signatures of these parasites and (3) to analyse infection patterns using a 20-year monthly database of cockle monitoring from Banc d'Arguin (France). Due to identification uncertainties, the analysis of the database was restricted to H. interrupta and H. quissetensis, and it was revealed that these parasites infect cockles of the same size range. The intensity of parasites increased with cockle size/age. During the colder months, the mean parasite intensity of a cockle cohort decreased, while infection occurred in the warmest season. No inter-specific competition between trematode parasites was detected. Furthermore, even if the intensity of H. interrupta or H. quissetensis infection fluctuated in different years, this did not modify the trematode community structure in the cockles. The intensity of infection of both species was also positively correlated with trematode species richness and metacercarial abundance. This study highlighted the possible detrimental role of Himasthla spp. in cockle population dynamics. It also revealed the risks of misidentification, which should be resolved by further molecular approaches.
South-west China, particularly between the Himalayas and the Beibu Gulf, constitutes an important corridor for migratory raptors along the East-Asian continental flyway. However, a lack of ornithological assessment and the common practice of illegal hunting in this region emphasize the need for research and conservation actions. To investigate the ecology of migration and scale of persecution, we launched one of the first citizen-science projects in mainland China to record southward-migrating raptors and hunting gunshots from 2015 to 2019 on Guantouling, a well-known raptor site in South-west China. A total of 42,891 raptors were recorded, belonging to 30 diurnal raptor species. Grey-faced Buzzard Butastur indicus, Oriental Honey Buzzard Pernis ptilorhynchus and Amur Falcon Falco amurensis were the three most abundant species recorded. The bulk of Grey-faced Buzzard and Amur Falcon migrated through Guantouling from mid-October till early November, while Oriental Honey Buzzard migrated throughout October and early November. Precipitation slowed down migration significantly while increasing cloud cover was favoured by the three most abundant species. We found hunting mostly occurred in the afternoon, coinciding with an increasing number of Oriental Honey Buzzard, which may become a major victim of hunting. It is thus suggested to prioritize peak raptor migration period for law enforcement actions, especially on cloudy days and after passage of cold fronts, when Oriental Honey Buzzards and other species are likely to migrate. The annual counting scheme on Guantouling is not only an ecological survey, but also an effective way of engaging the public to counter raptor persecution.
The root-knot nematode, Meloidogyne javanica, is a major problem for the production of Sacha Inchi plants. We examined the effects of strip intercropping of Sacha Inchi/Chinese leek of 3–4 years on the seasonal dynamics of plant and soil traits in tropical China. Results indicated that in the intercropping system, a partially temporal divergence of belowground resource acquisition via niche separation occurred throughout the growing seasons, besides a complete spatially-separated plant height between the two crops. Compared with Sacha Inchi monoculture, the increased seed yield per unit area in the intercropping system was mainly attributed to the higher plant survival rate, rather than the enhanced plant traits of healthy plants. Intercropping greatly suppressed M. javanica populations only in the wet season, compared with monoculture; which may be associated with the combined effects of the direct allelopathy and indigenous microbe induced-suppressiveness. Intercropping did not affect microbial richness and α-diversity in the rhizosphere, except for the decreased fungal richness. Both bacterial and fungal composition and structure were diverged between monoculture v. intercropping system. The relative abundances of the dominant bacterial genera (Bacillus, Gaiellales, Lactococcus, Massilia and Lysobacter, etc.) differed significantly between the two cropping systems. For fungi, intercropping decreased the relative abundances of Fusarium and Gibberella, but increased those of Nectriaceae_unclassified, Chaetomiaceae, Humicola and Mortierella. Overall, Sacha Inchi/Chinese leek intercropping suppressed M. javanica populations and shifted microbial compositions (especially decreased pathogen-containing Fusarium). The increased yield and economic returns in this intercropping system provide valid information for the effective agricultural management.
The main aim of the current study was to present the abilities of widely used crop models to simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed rape). The 13 models were tested under Central European conditions represented by three locations in the Czech Republic, selected using temperature and precipitation gradients for the target crops in this region. Based on observed crop phenology and yield from 1991 to 2010, performances of individual models and their ensemble were analyzed. Modelling of anthesis and maturity was generally best simulated by the ensemble median (EnsMED) compared to the ensemble mean and individual models. The yield was better simulated by the best models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with the best results for silage maize, while the lowest accuracy was for winter oilseed rape according to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs) for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. without failures) across all included crops within the target environment should be selected. Application crop models ensemble is one way to increase the accuracy of predictions, but lower variability of ensemble outputs was confirmed.
The population of the recently-described Whenua Hou diving petrel Pelecanoides whenuahouensis comprises c. 200 adults that all breed in a single 0.018 km2 colony in a dune system vulnerable to erosion. The species would therefore benefit from the establishment of a second breeding population through a translocation. However, given the small size of the source population, it is essential that translocations are informed by carefully targeted monitoring data. We therefore modelled nest survival at the remaining population in relation to potential drivers (distance to sea and burrow density of conspecifics and a competitor) across three breeding seasons with varying climatic conditions as a result of the southern oscillation cycle. We also documented breeding phenology and burrow attendance, and measured chicks, to generate growth curves. We estimated egg survival at 0.686, chick survival at 0.890, overall nest survival at 0.612, and found no indication that nest survival was affected by distance to sea or burrow density. Whenua Hou diving petrels laid eggs in mid October, eggs hatched in late November, and chicks fledged in mid January at c. 86% of adult weight. Burrow attendance (i.e. feeds) decreased from 0.94 to 0.65 visits per night as chicks approached fledging. Nest survival and breeding biology were largely consistent among years despite variation in climate. Nest survival estimates will facilitate predictions about future population trends and suitability of prospective translocation sites. Knowledge of breeding phenology will inform the timing of collection of live chicks for translocation, and patterns of burrow attendance combined with growth curves will structure hand-rearing protocols. A tuhinga whakarāpopoto (te reo Māori abstract) can be found in the Supplementary material.
Winter wild oat [Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne; referred to as A. sterilis here] is one of the major weed species of the Avena genus, given its high competitive ability to infest cereal crops worldwide, with special concern in Spain. A nine-location field experiment was established across Spain where a total of 400 A. sterilis seeds per location were sowed in four replicates in autumn 2016 to monitor the emergence during two growing seasons in dryland conditions. The data were used to test the prediction ability of previously published thermal (TT) and hydrothermal time (HTT) models and to develop new models, if required. Overall, the average percentage of emergence was 30% during the first season and 21% during the second season. In both seasons, the main emergence flush occurred between November and February. According to the phenological stage, A. sterilis achieved the tillering earlier in southern sites, between November 25 and the end of December, compared with northern sites, where this stage was reached at the end of January. The newly developed model described the emergence with precision, using three cardinal temperatures to estimate the TT. The three cardinal points were established at −1.0, 5.8, and 18.0 C for base (Tb), optimum (To), and ceiling temperature (Tc), while the base water potential (Ψb) was established at −0.2 MPa for the HTT estimation. This study contributes to improving prediction of the emergence of A. sterilis and provides knowledge for decision support systems (DSS) for the control of this weed.
Redroot pigweed (Amaranthus retroflexus L.) and slender amaranth (Amaranthus viridis L.) are considered emerging problematic weeds in summer crops in Australia. An outdoor pot experiment was conducted to examine the effects of planting time on two populations of A. retroflexus and A. viridis at the research farm of the University of Queensland, Australia. Both species were planted every month from October to January (2017 to 2018 and 2018 to 2019), and their growth and seed production were recorded. Although both weeds matured at a similar number of growing degree days (GDD), they required a different number of days to complete their life cycles depending on planting date. The growth period was reduced and flowering occurred sooner as both species experienced cooler temperatures and shorter daylight hours. Both species exhibited increased height, biomass, and seed production for the October-sown plants compared with other planting times, and these parameters were reduced by delaying the planting time. The shoot and root biomass of A. retroflexus and A. viridis (averaged over both populations) was reduced by more than 70% and 65%, respectively, when planted in January, in comparison to planting in October. When planted in October, A. retroflexus and A. viridis produced 11,350 and 5,780 seeds plant−1, but these were reduced to 770 and 365 seeds plant−1 for the January planting date, respectively. Although the growth and fecundity of these species were dependent on planting time, these weeds could emerge throughout the late spring to summer growing season (October to March) in southeast Australia and could produce a significant number of seeds. The results showed that when these species emerged in the late spring (October), they grew vigorously and produced more biomass in comparison with the other planting dates. Therefore, any early weed management practice for these species could be beneficial for minimizing the subsequent cost and energy inputs toward their control.
Argulus canadensis is a crustacean ectoparasite observed increasingly on wild migrating adult Atlantic salmon. We investigated temperature and salinity tolerance regarding development, survival and hatch of A. canadensis eggs to help understand spatiotemporal features of transmission. Argulus canadensis eggs differentiate to pharate embryos by 35 days buttheir hatch is protracted to ~7 months. Cold treatment ⩾75 days mimics overwintering and terminates egg diapause, with 84.6% (72.1–100%) metanauplius hatch induced ⩾13 °C and synchronized to 3–4 weeks. Inter- and intra-clutch variability and protracted hatch in the absence of cold-temperature termination of diapause is compatible with bet hedging. Whereas diapause likely promotes phenological synchrony for host colocalization, bet hedging could afford temporal plasticity to promote host encounter during environmental change. Our egg storage and hatch induction/synchronization methodologies can be exploited for empirical investigations. Salinity tolerance reveals both significantly higher embryonic development (94.4 ± 3.5% vs 61.7 ± 24.6%) and metanauplius hatch (53.3 ± 7.5% vs 10.1 ± 8.2%) for eggs in freshwater than at 17 ppt. Unhatched embryos were alive in freshwater by the end of the trial (213 days) but were dead/dying at 17 ppt. Eggs did not develop at 34 ppt. Salinity tolerance of A. canadensis eggs supports riverine transmission to adult Atlantic salmon during return to freshwater for mating each year.
Before any late-season weed control operations are planned to manage herbicide-resistant weeds, it is essential to evaluate the plants’ maturity and shattering potential. Our goal was to assess the seed-shattering phenology of common ragweed (Ambrosia artemisiifolia L.) using pollination bags as seed traps. A secondary goal was to evaluate the efficiency of these traps. Trials were conducted from 2014 to 2017 at two locations in eastern Canada (Saint-Jean-sur-Richelieu, QC, and Harrow, ON). At each location, three adjacent fields were seeded with spring wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], or corn (Zea mays L.). Each field was divided into four replicate blocks that included two treatment plots with 5 weeds m−2 planted on the same date as the crop or when crop plants had two leaves (early or late emergence). To evaluate shattering in time, the experiment included up to 12 weekly collection dates (subplots). In each subplot, weeds were individually bagged at flowering (using mesh bags) until collection, when the number and viability of shattered and retained seeds per plant was recorded. Weather data as well as crop and weed stages were recorded. The effect of the pollen bags on seed retrieval and viability was evaluated by installing open and closed bags in corn and uncropped (bare) plots at a single location. Ambrosia artemisiifolia seed biomass was equivalent or higher in closed bags, and seed viability was equivalent or slightly reduced. No seeds were produced before harvest in spring wheat, as dispersal started in September. The percentage of seeds retained on the plant decreased linearly (1 site-year) or followed a logistic equation (4 site-years) with day of year or growing degree days. Dispersal in time was similar between early- and late-emerging weeds and similar in both corn and soybean. On average, more than 50% of A. artemisiifolia seeds were dispersed before harvest in corn and soybean.
Seasonally dry tropical forests (SDTFs) stand out by the diversity of phenological patterns used by plants to deal with dry periods. Although the predominant phenological pattern is dry deciduousness, in Mesoamerican SDTFs the heliophilous tree species Bonellia (formerly Jacquinia) nervosa displays an unusual inverted leaf phenology, producing and holding leaves through the dry season while becoming deciduous in the rainy season. Applying a dry season irrigation field experiment (no water, low watering, high watering), we studied the consequences of contrasting water availability from a phenological plasticity response perspective. Contrary to our expectations, our results show no effect of irrigation treatment on leaf phenology. In addition, mid-day twig water potential showed no significant differences across treatments, but reproductive phenological responses varied among treatments: canopy flowering per cent decreased gradually until the beginning of the wet season in all treatments; meanwhile canopy fruit per cent showed a significant decline under low irrigation. Finally, non-structural carbohydrate concentration (starch) was significantly higher in the high irrigation treatment. Our results showed that inverted leaf phenology remains unaffected regardless of supplemental water availability, and suggest a reallocation of non-structural carbohydrates to fruits and seeds in high-irrigation treatments. Given the current and expected increase in extreme drought events, investigations on the responses of trees of different phenologies, including those of inverted leafing such as Bonellia nervosa, are warranted.