We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vertebral compression fractures are characterized by a break in the vertebrae comprising the spinal column, most likely on the anterior side and most commonly occurring when the osseous matrix has been weakened. The high morbidity and mortality associated with VCFs have given rise to an estimated annual medical cost of $13.8 billion in the United States alone. Prevention includes screening at-risk individuals’ bone marrow density and augmenting individuals with decreased bone density with bisphosphonates or RANK ligand inhibitors. The management of VCFs has been heavily debated with arguments for both conservative management and invasive augmentation through vertebroplasty and kyphoplasty. Invasive management should be considered in patients with uncontrolled pain, significant vertebral misalignment, and height deformities.
To explore the relationship between dietary antioxidant quality score (DAQS) and Cd exposure both alone and in combination with osteoporosis and bone mineral density (BMD) among postmenopausal women. In total, 4920 postmenopausal women from the National Health and Nutrition Examination Survey were included in this cross-sectional study. Weighted univariate and multivariate logistic regression analyses to assess the association between DAQS and Cd exposure with femur neck BMD, total femur BMD, osteoporosis among postmenopausal women, respectively, and the coexistence effect of DAQS and Cd exposure. Four hundred and ninety-nine had osteoporosis. DAQS (OR = 0·86, 95 % CI 0·77, 0·97) and high DAQS (OR = 0·60, 95 % CI 0·36, 0·99) were found to be associated with decreased odds of osteoporosis, while Cd exposure (OR = 1·34, 95 % CI 1·04, 1·72) and high Cd exposure (OR = 1·45, 95 % CI 1·02, 2·06) were related to increased odds of osteoporosis. A positive correlation was observed between high DAQS and both total femur BMD and femur neck BMD. Conversely, Cd exposure was found to be negatively correlated with total femur BMD and femur neck BMD. Additionally, taking low-Cd and high-quality DAQS group as reference, the joint effect of Cd exposure and DAQS showed greater increased odds of osteoporosis and decreased total femur BMD and femur neck BMD as Cd level and DAQS combinations worsened. There may be an interaction between Cd exposure and DAQS for femur neck BMD, total femur BMD, and osteoporosis in postmenopausal women.
What is the ideal way to build strong bones? When young, run, jump, play. Drink milk. When adults, get a healthy quantity of calcium and vitamin D. Six important actions for building strong bones explained. Exercise, Vitamin D. Calcium. Limit alcohol and tobacco. For women, when 65, get bone density test to check for osteoporosis. Prevent falls. Check medications. Falls are the number one injury-related cause of fatality for people over 65. Tai chi can reduce the risk of falls by 60%!
Polydatin is an active polyphenol displaying multifaceted benefits. Recently, growing studies have noticed its potential therapeutic effects on bone and joint disorders (BJDs). Therefore, this article reviews recent in vivo and in vitro progress on the protective role of polydatin against BJDs. An insight into the underlying mechanisms is also presented. It was found that polydatin could promote osteogenesis in vitro, and symptom improvements have been disclosed with animal models of osteoporosis, osteosarcoma, osteoarthritis and rheumatic arthritis. These beneficial effects obtained in laboratory could be mainly attributed to the bone metabolism-regulating, anti-inflammatory, antioxidative, apoptosis-regulating and autophagy-regulating functions of polydatin. However, studies on human subjects with BJDs that can lead to early identification of the clinical efficacy and adverse effects of polydatin have not been reported yet. Accordingly, this review serves as a starting point for pursuing clinical trials. Additionally, future emphasis should also be devoted to the low bioavailability and prompt metabolism nature of polydatin. In summary, well-designed clinical trials of polydatin in patients with BJD are in demand, and its pharmacokinetic nature must be taken into account.
Due to the increasing demand for antibiotic-free livestock products from the consumer side and the ban on the use of antibiotic growth promoters, the poultry feed industry is increasingly interested in developing more alternatives to cope with this problem. Organic acids (butyric acid) have many beneficial effects on poultry health, performance, and egg quality when used in their diet, thus they can be considered for the replacement of antibiotics in livestock production systems. Butyric acid is most efficacious against pathogenic bacteria such as Salmonella spp. and Escherichia coli, and stimulates the population of beneficial gut bacteria. It is a primary energy source for colonocytes and augments the differentiation and maturation of the intestinal cells. Collectively, butyric acid should be considered as an alternative to antibiotic growth promoters, because it reduces pathogenic bacteria and their toxins, enhancing gut health thereby increasing nutrient digestibility, thus leading to improved growth performance and immunity among birds. The possible pathways and mechanisms through which butyric acid enhances gut health and production performance are discussed in this review. Detailed information about the use of butyric acid in poultry and its possible benefits under different conditions are also provided, and the impacts of butyric acid on egg quality and osteoporosis are noted.
The classical deficiency diseases have nearly disappeared from the industrialised world and are thought to be found largely in sub-Saharan Africa and South Asia. More than 80 collected medical articles, mostly from Europe and North America, describe more than 9000 people with low concentrations of copper in organs or tissues or impaired metabolic pathways dependent on copper. More than a dozen articles reveal improved anatomy, chemistry or physiology in more than 1000 patients from supplements containing copper. These criteria are diagnostic of deficiency according to The Oxford Textbook of Medicine. Alzheimer's disease, ischaemic heart disease and osteoporosis receive major emphasis here. However, impaired vision, myelodysplastic syndrome and peripheral neuropathy are mentioned. Copper deficiency probably causes some common, contemporaneous diseases. Advice is provided about opportunities for research. Seemingly authoritative statements concerning the rarity of nutritional deficiency in developed countries are wrong.
Bone disorders are extremely rare cause of stroke. Several bone disorders and abnormalities have been shown to be associated with stroke: osteoporosis, skull disorders (Osteopetrosis, Paget’s disease, and Craniosynostosis), skeletal abnormalities (Spondyloepiphyseal dysplasia, Schimke syndrome, and Camurati-Engelmann disease), bone tumors (osteochondromas and osteosarcoma), fibrocartilaginous and fat emboli, and orthopedics procedures.The relationship of these diseases with stroke has been shown, but mostly insufficiently elucidated yet. Bone diseases related stroke is highly plausible but only after other, more common causes, are ruled out
Osteoporosis, a systemic skeletal disorder associated with substantial morbidity and mortality, has been suggested to be particularly common among individuals with bipolar disorder. Lithium, a mood-stabilizer used as first-line treatment for bipolar disorder, may have bone-protecting properties.
Objectives
We aimed to subject both of these hypotheses to further examination in a nationwide register-based study.
Methods
We compared the incidence of osteoporosis, identified via hospital discharge diagnoses and prescribed medications, between all individuals diagnosed with bipolar disorder and age- and sex-matched controls from the general population (earliest start of follow-up at the age of 40 years) using Cox regression. Subsequently, we followed the patients with bipolar disorder and identified all prescriptions for mood-stabilizing medications. Using Cox regression, we compared the incidence of osteoporosis for patients using lithium, antipsychotics or anticonvulsants, respectively, with that of patients not using these medications.
Results
We followed 22,912 patients with bipolar disorder (median age 50.4 years, 43.4% men) and 114,560 matched controls for 1,215,698 person-years. The incidence of osteoporosis per 1,000 person-years was 8.70 (95%CI:8.28-9.14) among patients with bipolar disorder and 7.84 (95%CI:7.67-8.01) among controls, resulting in a hazard rate ratio (HRR) of 1.15 (95%CI:1.09-1.21). Lithium treatment was associated with reduced risk of osteoporosis (HRR=0.62; 95%CI:0.53-0.72) in a treatment-duration-response-like manner. Treatment with antipsychotics and anticonvulsants was not associated with reduced risk of osteoporosis.
Conclusions
This is the first longitudinal study to show that the risk of osteoporosis is elevated among patients with bipolar disorder, and that treatment with lithium is associated with reduced risk of osteoporosis.
Disclosure
Dr. Østergaard has received the 2020 Lundbeck Foundation Young Investigator Prize. Furthermore, SDØ owns units of mutual funds with stock tickers DKIGI, DKIDKIX, MAJGRO, NBIDE, SPIC20CAPK, SPVILRKL and WEKAFKI.
Age-related changes in bone metabolism are reviewed as well as the impact of age-related diseases on bone health. Current guidelines for osteoporosis screening and treatment are provided. Management of other metabolic bone disorders of older adults is detailed, including the conditions of osteomalacia, hyperparathyroidism, Paget ’s disease, and renal osteodystrophy.
Recent efforts for alternative non-pharmaceutical treatments for postmenopausal osteoporosis are focused on nutritional measures. The aim of this study was to investigate the effect of table olive wastewater extract (OE) administration on bone mineral density (BMD) and biomechanical strength in ovariectomised rats. Thirty mature 9-month-old female Wistar rats were separated into three groups of ten: Control, Ovariectomised (OVX) and OVX + OE. BMD was measured before ovariectomy, 3 and 6 months afterwards. At the end of the study, blood, both femurs and tibias, internal organs and abdominal fat were collected. After 3 months, the percentage changes from baseline of the total and proximal tibial BMD of the OVX + OE group were both higher compared with the OVX group (P < 0·005). Similar results were found after 6 months, when the percentage changes from baseline of the total and proximal tibial BMD of the OVX + OE group were both higher compared with the OVX group (P < 0·005). Biomechanical testing of the femurs did not reveal any statistically significant difference between the groups. Body weights throughout the study, organs’ and abdominal fat ratios to final body weight and blood results (alanine aminotransferase (ALT), gamma-glutamyltransferase (γ-GT), total cholesterol, HDL-cholesterol, LDL-cholesterol, Ca and P) were within normal limits and did not show any significant difference between the treated and untreated groups. As a conclusion, the administration of OE for 6 months protected tibial BMD loss in comparison with the untreated OVX group without causing adverse effects.
The aim of this network meta-analysis is to compare bone mineral density (BMD) changes among different osteoporosis prevention interventions in postmenopausal women. We searched MEDLINE, Embase and Cochrane Library from inception to 24 February 2019. Included studies were randomised controlled trials (RCT) comparing the effects of different treatments on BMD in postmenopausal women. Studies were independently screened by six authors in three pairs. Data were extracted independently by two authors and synthesised using Bayesian random-effects network meta-analysis. The results were summarised as mean difference in BMD and surface under the cumulative ranking (SUCRA) of different interventions. A total of ninety RCT (10 777 participants) were included. Ca, vitamin D, vitamin K, oestrogen, exercise, Ca + vitamin D, vitamin D + vitamin K and vitamin D + oestrogen were associated with significantly beneficial effects relative to no treatment or placebo for lumbar spine (LS). For femoral neck (FN), Ca, exercise and vitamin D + oestrogen were associated with significantly beneficial intervention effects relative to no treatment. Ranking probabilities indicated that oestrogen + vitamin D is the best strategy in LS, with a SUCRA of 97·29 % (mean difference: +0·072 g/cm2 compared with no treatment, 95 % credible interval (CrI) 0·045, 0·100 g/cm2), and Ca + exercise is the best strategy in FN, with a SUCRA of 79·71 % (mean difference: +0·029 g/cm2 compared with placebo, 95 % CrI –0·00093, 0·060 g/cm2). In conclusion, in postmenopausal women, many interventions are valuable for improving BMD in LS and FN. Different intervention combinations can affect BMD at different sites diversely.
Clinical trials with percutaneous vertebral augmentation (PVA) for intractable pain from vertebral compression fractures (VCF) have shown variable results. Variation in the outcomes may be related to poor patient selection on imaging.
Objective:
To assess if PVA augmentation for osteoporotic VCF results in better improvement in pain when patients were selected based on clinical examination plus imaging vs clinical examination only.
Results:
A systematic review and meta-analysis were performed. PubMed, Embase and Cochrane Library databases were searched from 2000 to May 2018. Two reviewers independently screened and extracted data to identify randomised control trials (RCTs) on PVA for osteoporotic VCF and assessed the risk of bias. Standard systematic review and meta-analysis methods were advocated by the Cochrane Collaboration and PRISMA Statement. A total of 12 RCTs with 1110 participants met the inclusion criteria. Eight of the 10 studies (938 participants) that used imaging to confirm oedema in the target vertebral bodies showed PVA (compared to nonsurgical treatment) was effective in reducing pain (immediate term: mean difference (MD) of −1.89; 95% confidence interval −1.93 to −1.85, p < 0.001; short term: MD of −1.68; 95% CI −1.82 to −1.54, p < 0.001; intermediate term: MD of −2.04; 95% CI −2.15 to −1.94, p < 0.001 and long term: MD of −1.88; 95% CI −1.95 to −1.80, p < 0.001).
Conclusions:
RCTs using imaging to confirm marrow oedema in the index vertebra showed an improved size effect compared to RCTs using no imaging. This benefit was observed in the immediate, short, intermediate and long term.
To assess knowledge of osteoporosis and its risk factors and to explore associations between knowledge and various sociodemographic factors in Indian adults.
Design
Cross-sectional study. The Revised Osteoporosis Knowledge Test (OKT) was used to assess knowledge of osteoporosis. Four scores (OKT-total, range 0–32; OKT-exercise, range 0–20; OKT-nutrition, range 0–26; OKT-risk factors, range 0–14) were generated by giving 1 point to every correct answer and 0 points for incorrect or ‘not known’ answers.
Setting
Tertiary-care hospital in Pune city, India.
Participants
Adults aged 40–75 years (n 477; 234 males) enrolled through voluntary routine health checks and health camps.
Results
Mean age of the study population was 54·6 (sd 9·5) years. Half the participants were aware of osteoporosis and could correctly define it. Women showed significantly higher median OKT-total and OKT-nutrition scores than men (P<0·05). Those with higher education and higher socio-economic status had significantly higher scores in both men and women (P<0·05). All four scores were significantly higher in both men and women who could correctly define osteoporosis (P<0·05). All four scores were significantly higher in women with a family history of osteoporosis (P<0·05) but not in men (P>0·1).
Conclusions
Understanding about osteoporosis and its risk factors is low in the present cohort of Indian men and women. There is need to create awareness programmes aimed at both men and women especially targeting those with lower education, lower socio-economic status and no previous exposure to osteoporosis.
We aimed to systematically review available data on the association between vitamin C intake and bone mineral density (BMD), as well as risk of fractures and osteoporosis, and to summarise this information through a meta-analysis. Previous studies on vitamin C intake in relation to BMD and risk of fracture and osteoporosis were selected through searching PubMed, Scopus, ISI Web of Science and Google Scholar databases before February 2017, using MeSH and text words. To pool data, either a fixed-effects model or a random-effects model was used, and for assessing heterogeneity, Cochran’s Q and I2 tests were used. Subgroup analysis was applied to define possible sources of heterogeneity. Greater dietary vitamin C intake was positively associated with BMD at femoral neck (pooled r 0·18; 0·06, 0·30) and lumbar spine (pooled r 0·14; 95 % CI 0·06, 0·22); however, significant between-study heterogeneity was found at femoral neck: I2=87·6 %, Pheterogeneity<0·001. In addition, we found a non-significant association between dietary vitamin C intake and the risk of hip fracture (overall relative risk=0·74; 95 % CI 0·51, 1·08). Significant between-study heterogeneity was found (I2=79·1 %, Pheterogeneity<0·001), and subgroup analysis indicated that study design, sex and age were the main sources of heterogeneity. Greater dietary vitamin C intake was associated with a 33 % lower risk of osteoporosis (overall relative risk=0·67; 95 % CI 0·47, 0·94). Greater dietary vitamin C intake was associated with a lower risk of hip fracture and osteoporosis, as well as higher BMD, at femoral neck and lumbar spine.
This study investigates the knowledge, attitudes, and practices (KAP) of family physicians in Iran, regarding osteoporosis and their experience with national osteoporosis guideline.
Background
Osteoporosis is a relatively preventable, chronic and progressive disease. Family physicians play a crucial role in relieving the burden of care.
Methods
This cross-sectional study was addressed at all qualified family physicians who registered at urban family physicians and referral system program. Data collection included demographics, professional experience, and knowledge of guidelines based on a standardized KAP questionnaire. Student’s t-test was used to measure the associations between KAP scores and demographic, professional experience variables.
Findings
The response rate was 72% (540/750). Based on Bloom’s cut off scale, family physicians knowledge and practice scores were in moderate level, and only 14 and 38.5% of them had good knowledge and practice, respectively. Attitude score was in good level, and 64.1% of participants had positive attitude. Mean score of knowledge and practice were higher significantly among family physicians that practice in public settings. Family physicians, who completed osteoporosis training courses, had higher attitude score (P=0.03). Only 23.5% of family physicians were aware of the existence of national osteoporosis guideline.
Conclusion
Although most family physicians believed in the importance of preventive measures, however, limited number of them had good knowledge and practice regarding osteoporosis and less than a quarter were aware of national guideline. This is a clear need to disseminate the guideline more effectively, make greater use of efficient training methods.
The bone regeneration and healing effect of formononetin was evaluated in a cortical bone defect model that predominantly heals by intramembranous ossification. For this study, female Balb/c mice were ovariectomised (OVx) and a drill-hole injury was generated in the midfemoral bones of all animals. Treatment with formononetin commenced the day after and continued for 21 d. Parathyroid hormone (PTH1–34) was used as a reference standard. Animals were killed at days 10 and 21. Femur bones were collected at the injury site for histomorphometry studies using microcomputed tomography (μCT) and confocal microscopy. RNA and protein were harvested from the region surrounding the drill-hole injury. For immunohistochemistry, 5 µm sections of decalcified femur bone adjoining the drill-hole site were cut. μCT analysis showed that formononetin promoted bone healing at days 10 and 21 and the healing effect observed was significantly better than in Ovx mice and equal to PTH treatment in many aspects. Formononetin also significantly enhanced bone regeneration as assessed by calcein-labelling studies. In addition, formononetin enhanced the expression of osteogenic markers at the injury site in a manner similar to PTH. Formononetin treatment also led to predominant runt-related transcription factor 2 and osteocalcin localisation at the injury site. These results support the potential of formononetin to be a bone-healing agent and are suggestive of its promising role in the fracture-repair process.
Research considering the relationship between dietary Mg and osteoporosis as well as fractures are sparse and conflicting. We therefore aimed to investigate Mg intake and the onset of fractures in a large cohort of American men and women involved in the Osteoarthritis Initiative over a follow-up period of 8 years. Dietary Mg intake (including that derived from supplementation) was evaluated through a FFQ at baseline and categorised using sex-specific quintiles (Q); osteoporotic fractures were evaluated through self-reported history. Overall, 3765 participants (1577 men; 2071 women) with a mean age of 60·6 (sd 9·1) years were included. During follow-up, 560 individuals (198 men and 368 women) developed a new fracture. After adjusting for fourteen potential confounders at baseline and taking those with lower Mg intake as reference (Q1), men (hazard ratio (HR) 0·47; 95 % CI 0·21, 1·00, P=0·05) and women (HR 0·38; 95 % CI 0·17, 0·82, P=0·01) in the highest quintile reported a significantly lower risk for fracture. Women meeting the recommended Mg intake were at a 27 % decreased risk for future fractures. In conclusion, higher dietary Mg intake has a protective effect on future osteoporotic fractures, especially in women with a high risk for knee osteoarthritis. Those women meeting the recommended Mg intake appear to be at a lower risk for fractures.
A high Ca intake has been recommended for osteoporosis prevention; however, little research has examined the relationship between dietary Ca and bone health in men. We examined associations between dietary Ca intake, bone mineral density (BMD) and change in BMD at the total body, hip and spine over 2 years in a cohort of men (mean age 57 years, BMI 26 kg/m2) from a trial. Data from the total cohort (n 323) were used in the analysis of Ca intake and BMD at baseline, and data from the placebo group (n 99) were used in the longitudinal analysis of Ca intake and change in BMD. Parathyroid hormone (PTH) and the markers of bone turnover serum total alkaline phosphatase activity, serum C-telopeptide and serum procollagen type-1 N-terminal propeptide were measured in a subset of participants at baseline (n 150), and associations with dietary Ca at baseline were examined. Mean Ca intake was 870 mg/d. Baseline BMD was not related to dietary Ca intake at any site, before or after adjustment for covariables. Similarly, bone loss over 2 years was not related to Ca intake at any site, before or after adjustment. Dietary Ca intake was inversely correlated with PTH at baseline (r −0·19, P=0·02), but was not associated with the markers of bone turnover. BMD and rates of bone loss were unrelated to Ca intake in these men. This suggests that strategies to increase Ca intake are unlikely to impact on the prevalence of and morbidity from male osteoporosis.
Carotenoids are found in abundance in fruit and vegetables, and may be involved in the positive association of these foods with bone health. This study aimed to explore the associations of dietary carotenoid intakes and plasma concentrations with bone density status and osteoporotic fracture risk in a European population. Cross-sectional analyses (n 14 803) of bone density status, using calcaneal broadband ultrasound attenuation (BUA) and longitudinal analyses (n 25 439) of fracture cases were conducted on data from the prospective European Prospective Investigation into Cancer and Nutrition-Norfolk cohort of middle-aged and older men and women. Health and lifestyle questionnaires were completed, and dietary nutrient intakes were derived from 7-d food diaries. Multiple regression demonstrated significant positive trends in BUA for women across quintiles of dietary α-carotene intake (P=0·029), β-carotene intake (P=0·003), β-cryptoxanthin intake (P=0·031), combined lutein and zeaxanthin intake (P=0·010) and lycopene intake (P=0·005). No significant trends across plasma carotenoid concentration quintiles were apparent (n 4570). The Prentice-weighted Cox regression showed no trends in fracture risk across dietary carotenoid intake quintiles (mean follow-up time 12·5 years), except for a lower risk for wrist fracture in women with higher lutein and zeaxanthin intake (P=0·022); nevertheless, inter-quintile differences in fracture risk were found for both sexes. Analysis of plasma carotenoid data (mean follow-up time 11·9 years) showed lower hip fracture risk in men across higher plasma α-carotene (P=0·026) and β-carotene (P=0·027) quintiles. This study provides novel evidence that dietary carotenoid intake is relevant to bone health in men and women, demonstrating that associations with bone density status and fracture risk exist for dietary intake of specific carotenoids and their plasma concentrations.