We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In recent years, the rapidly increasing incidence of obesity is becoming a worldwide public health problem. Obesity is a chronic disease which may have a major negative effect on the people’s quality of life. Previous studies on the comprehensive effects of multivitamins on central obesity and general obesity are relatively few. The aim of this study was to evaluate association of vitamins exposure with obesity risk and obesity-related indicators. We fitted three statistical models (linear regression model, logistic regression model, and Bayesian kernel machine regression model) to evaluate the correlation between vitamin levels and obesity in the study population. The vitamin score represents the overall level of vitamin in serum, which was mutually verified with the results obtained from statistical model. The vitamin (A, C, and D) levels were significantly higher among non-obesity group compared to the obesity group. Using the lowest quartile of vitamin level as a referent, vitamin A, C, and D levels showed significantly negative correlation with the obesity risk in both adjusted and unadjusted models. When considering all vitamin as a mixed exposure, we found a generally negative relationship between vitamin mixtures with binary outcome (obesity) and continuous outcome (BMI, waist circumference, and hsCRP). Reduced levels of vitamins (A, C and D) increased the risk of obesity. Increased levels of vitamin mixtures can significantly reduce obesity risk and obesity-related indicators. Vitamins may reduce the risk of obesity by suppressing inflammatory responses.
The present prospective cohort study aimed to determine whether dietary antioxidants were associated with incident type 2 diabetes mellitus (T2DM). Another objective was to find out whether such associations could be modified by the BMI status. A total of 2188 Tehranian adults aged 21–84 years, free of T2DM with the validated FFQ, was entered in the study. Multivariable Cox proportional hazards models adjusting for confounders were used to assess the association between dietary antioxidants and incident T2DM in total population, as well as in subjects with various BMI statuses. During 8·9 (8·1–9·6) years of follow-up, dietary vitamin E significantly decreased the incident T2DM, after adjustment for confounders. However, other dietary antioxidants were not shown to be significantly associated with incident T2DM. The interaction between dietary vitamin E, Mg and BMI status was found to influence the risk of T2DM (Pfor interaction < 0·05). After stratification of subjects based on BMI status, it was found that vitamin E and Mg decreased the risk of T2DM only among normal-weight individual. Also, an inverse association was found among dietary vitamin C, dietary Zn and the risk of T2DM in individuals with normal weight but not in overweight and obese individuals; however, the interaction test tended to be significant for these dietary variables. Dietary antioxidants including vitamin E, vitamin C, Zn and Mg when accompanied by healthy weight, may bring benefits to the prevention of T2DM.
An adequate alpha-tocopherol status is important for females at reproductive age. We studied the dietary intake and sources of alpha-tocopherol and alpha- and gamma-tocopherol status indicators in 14–19-year-old girls in Central Mozambique. We also explored factors associated with alpha- and gamma-tocopherol status. The participants (n 508) were from the cross-sectional ZANE Study that was conducted in 2010. We recruited two separate samples, one in January–February and the other in May–June. We collected venous blood samples and conducted 24 h dietary recall interviews. At the time of blood sampling, 11 % of participants were pregnant and 10 % were lactating. In the total sample, both seasons combined, the median intake of alpha-tocopherol was 6⋅7 mg/d, the mean plasma alpha- and gamma-tocopherol concentrations were 13⋅5 and 0⋅75 μmol/l, respectively, and the prevalence of vitamin E inadequacy (alpha-tocopherol <12 μmol/l) was 36⋅7 % (95 % CI: 31⋅9–42⋅0 %). Season and lactation status were significant predictors of alpha-tocopherol status regardless of which the three indicators (plasma concentration, alpha-tocopherol:total cholesterol ratio, gamma-tocopherol:alpha-tocopherol ratio) were used. Being a lactating mother was negatively associated and having a blood sample taken in January–February, when the main sources of alpha-tocopherol were mango and dark green leafy vegetables, was positively associated with alpha-tocopherol status. In conclusion, vitamin E inadequacy was common in Central Mozambique, and the status may fluctuate due to seasonal changes in the diet. We suggest that lactating mothers are specifically at risk of poor alpha-tocopherol status in resource-poor settings.
Cardiovascular diseases (CVD) are the leading cause of death worldwide. From this perspective, the role of vitamin E and its metabolites in preventing CVD has been studied, being supported by the findings that low vitamin E concentrations are associated with an increased risk of cardiovascular events. Despite this, no studies have analysed the co-existence of vitamin E deficiency (VED) and CVD on the basis of population studies. Facing that, this study summarises information on the relationship between vitamin E status and CVD, providing a basis for understanding the determining and protective factors for its development. VED may be a public health problem since it has been observed to vary from 0·6% to 55·5% worldwide, with higher percentages in Asia and Europe, where CVD mortality rates stand out. Intervention studies with α-tocopherol supplementation do not confirm cardioprotective action of vitamin E, which may reflect that α-tocopherol alone does not provide cardiovascular protection to individuals, but the consumption of all isomers found in food. Considering that low concentrations of α-tocopherol can lead to a higher susceptibility to diseases involving oxidative stress in the population, in addition to the high and growing prevalence of CVD and VED, it is essential to investigate or reinterpret the mechanisms of action of vitamin E and its metabolites in the cardiovascular process to better understand the co-existence of CVD and VED. It is also important to implement public health policies and programmes aimed at promoting the consumption of natural food sources of vitamin E and healthy fats.
Vitamin E is an important nutrient from the earliest stages of life. It plays key roles as an antioxidant and in the maintenance of the immune system, among others. Vitamin E deficiency (VED), which occurs more frequently in children, is rarely addressed in the literature. This narrative review aims to summarise the chemistry, biology, serum indicators and clinical trials that have evaluated the impact of fortification and other relevant aspects of vitamin E, in addition to the prevalence of its deficiency, in children worldwide. Vitamin E intake in recommended amounts is essential for this nutrient to perform its functions in the body. Serum α-tocopherol is the most widely used biochemical indicator to assess the prevalence of VED. VED has been associated with symptoms secondary to fat malabsorption and may lead to peripheral neuropathy and increased erythrocyte haemolysis. Reduced concentrations of α-tocopherol may be caused by the combination of diets with low amounts of vitamin E and inadequate consumption of fats, proteins and calories. The lowest prevalence of VED was found in Asia and the highest in North America and Brazil. High proportions of VED provide evidence that this nutritional deficiency is a public health problem in children and still little addressed in the international scientific literature. The planning, evaluation and implementation of health policies aimed at combatting VED in the paediatric population are extremely important.
Vitamin E (α-tocopherol; VE) is known to be regenerated from VE radicals by vitamin C (L-ascorbic acid; VC) in vitro. However, their in vivo interaction in various tissues is still unclear. Therefore, we alternatively examined the in vivo interaction of VC and VE by measurement of their concentrations in various tissues of senescence marker protein-30 (SMP30) knockout (KO) mice as a VC synthesis deficiency model. Male SMP30-KO mice were divided into four groups (VC+/VE+, VC+/VE–, VC–/VE+ and VC–/VE–), fed diets with or without 500 mg/kg VE and given water with or without 1·5 g/l VC ad libitum. Then, VC and VE concentrations in the plasma and various tissues were determined. Further, gene expression levels of transporters associated with VC and VE, such as α-tocopherol transfer protein (α-TTP) and sodium-dependent vitamin C transporters (SVCTs), were examined. These results showed that the VE levels in the VC-depleted (VC–/VE+) group were significantly lower than those in the VC+/VE+ group in the liver and heart; the VC levels in the VE-depleted (VC+/VE–) group were significantly lower than those in the VC+/VE+ group in the kidneys. The α-TTP gene expression in the liver and kidneys was decreased by VC and/or VE depletion. Moreover, SVCT1 gene expression in the liver was decreased by both VC and VE depletion. In conclusion, these results indicate that VC spares VE mainly in the liver and heart and that VE spares VC in the kidneys of SMP30-KO mice. Thus, interaction between VC and VE is likely to be tissue specific.
Alcohol abuse causes severe metabolic abnormalities inducing hepatic damage and malnutrition. Since higher Fischer ratio proteins have therapeutic value in liver diseases, an investigation was undertaken to study the ameliorative effect of the enhanced Fischer ratio flaxseed protein hydrolysate (EFR-FPH) alone and in combination with antioxidant micronutrients on ethanol-induced hepatotoxicity in a rat model. The EFR-FPH was prepared by dual enzymatic hydrolysis and charcoal treatment of flaxseed protein. The ratio of the branched-chain:aromatic amino acids (Fischer ratio) was found to be 7·08. The EFR-FPH, characterised using LC-MS/MS, showed the abundance of free leucine and isoleucine compared with phenylalanine and tyrosine. The matrix-assisted laser desorption/ionisation-time of flight MS analysis revealed the larger peptides present in EFR-FPH with mass 2·3 kDa. The EFR-FPH improved the nutritional status, liver function and antioxidant defense in the ethanol hepatotoxicity-induced rat model. The hepatoprotective effect of EFR-FPH was significantly enhanced when combined with selenium or vitamin E. Ethanol-induced changes in the liver tissue were effectively suppressed in the groups receiving EFR-FPH. Flaxseed-based hepatoprotective dietary supplement was formulated incorporating an optimum level of EFR-FPH (10 %) based on sensory acceptability and was fortified with selenium and vitamin E. The hepatoprotective formulation significantly lowered aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin by 47, 61, 55 and 78 %, respectively, and improved the antioxidant defense in the ethanol hepatotoxicity-induced rat model. The current investigation suggests that EFR-FPH in synergy with antioxidant micronutrients is potent in ameliorating ethanol-induced hepatotoxicity and has a potential to form a hepatoprotective dietary supplement.
Neurotoxicity is an adverse effect caused by cisplatin due to inflammation and oxidative stress in the central nervous system. The present study aimed to assess the effects of vitamin E injection on the learning and memory of rats with cisplatin-induced cognitive impairment.
Methods:
Male rats were administered with cisplatin (2 mg/kg/7 day; intraperitoneally [i i.p.]) and/or vitamin E (200 mg/kg/7 day; i.p.) for 1 week, and the control group received saline solution. Spatial memory was evaluated using Morris water maze (MWM). In addition, the hippocampal concentrations of malondialdehyde (MDA), thiol, and superoxide dismutase (SOD) were measured using biochemical methods.
Results:
According to the findings, cisplatin significantly increased the escape latency, while decreasing the time spent and travelled pathway in the target quadrant on the final trial day compared to the control group. Furthermore, pre-treatment with vitamin E significantly reversed all the results in the spatial memory test. The biochemical data indicated that vitamin E could decrease MDA activity and increase thiol and SOD activity compared to the control group.
Conclusion:
According to the results, vitamin E could improve cisplatin-induced memory impairment possibly through affecting the hippocampal oxidative status.
Fat-soluble vitamins during pregnancy are important for fetal growth and development. The present study aimed at exploring the association between vitamin A, E and D status during pregnancy and birth weight. A total of 19 640 women with singleton deliveries from a retrospective study were included. Data were collected by the hospital electronic information system. Maternal serum vitamin A, E and D concentrations were measured during pregnancy. Logistic regression was performed to estimate the association between the vitamin status and low birth weight (LBW) or macrosomia. Women with excessive vitamin E were more likely to have macrosomia (OR 1·30, 95 % CI 1·07, 1·59) compared with adequate concentration. When focusing on Z scores, there was a positive association between vitamin E and macrosomia in the first (OR 1·07, 95 % CI 1·00, 1·14), second (OR 1·27, 95 % CI 1·11, 1·46) and third (OR 1·28, 95 % CI 1·06, 1·54) trimesters; vitamin A was positively associated with LBW in the first (OR 1·14, 95 % CI 1·01, 1·29), second (OR 1·31, 95 % CI 1·05, 1·63) and third (OR 2·00, 95 % CI 1·45, 2·74) trimesters and negatively associated with macrosomia in the second (OR 0·79, 95 % CI 0·70, 0·89) and third (OR 0·77, 95 % CI 0·62, 0·95) trimesters. The study identified that high concentrations of vitamin E are associated with macrosomia. Maintaining a moderate concentration of vitamin A during pregnancy might be beneficial to achieve optimal birth weight. Further studies to explore the mechanism of above associations are warranted.
Vitamin E is known to scavenge lipid peroxy radicals and has a purported role in preventing seed deterioration during storage. In our previous studies using 20 rice varieties from different variety groups, the specific ratio of vitamin E homologues rather than total vitamin E content was associated with seed longevity. To validate this result, we extended the experiment to a rice panel composed of 185 Aus (semi-wild rice) varieties. Seed longevity values were determined through storage experiments at 45°C and 10.9% seed moisture content (MC). Eight types of vitamin E homologues (α-, β-, γ- and δ-tocopherol/tocotrienol) were quantified by ultra-performance liquid chromatography. The theoretical initial viability in NED, Ki, was positively correlated with γ- and δ-tocopherols and negatively correlated with α-tocotrienol. The time for viability to fall to 50% during storage at elevated temperature and relative humidity, p50, was positively correlated with δ-tocopherol. The harvest MC was negatively correlated with all seed longevity traits. Taking this factor into account in a genome-wide association (GWA) analysis, we were able to correct false positives. A consistent major peak on chromosome 4 associated with −σ−1 was detected with a mixed linear analysis. Based on rice genome annotation and gene network ontology databases, we suggest that RNA modification, oxidation–reduction, protein–protein interactions and abscisic acid signal transduction play roles in seed longevity extension of Aus rice. Although major GWA regions were not overlapped across traits, three genetic markers, on chromosomes 1, 3 and 4, were associated with both δ-tocopherol and Ki and two markers on chromosome 1 and 8 were associated with both δ-tocopherol and p50.
The vitamin status of a child depends on many factors and most of the clinical studies do not take into account the different access to adequate nutrition of children coming from different countries and the consequent major differences in micronutrients or vitamin deficits between low-income and high-income countries. Vitamin supplements are included in the general field of dietary supplements. There is a large amount of not always factual material concerning vitamin supplements, and this may sometimes create confusion in clinicians and patients. Inadequate information may lead to the risk of attributing beneficial properties leading to their over-use or misuse in the paediatric field. Vitamin supplementation is indicated in all those conditions in which a vitamin deficiency is found, either because of a reduced intake due to reduced availability of certain foods, restrictive diets or inadequate absorption. The lack of guidelines in these fields may lead paediatricians to an improper use of vitamins, both in terms of excessive use or inadequate use. This is due to the fact that vitamin supplementation is often intended as a therapy of support rather than an essential therapeutic tool able to modify disease prognosis. In fact, various vitamins and their derivatives have therapeutic potential in the prevention and treatment of many diseases, especially in emerging conditions of paediatric age such as type 2 diabetes and the metabolic syndrome. The aim of the present article is to analyse the state of the art and consider new perspectives on the role of vitamin supplements in children.
We previously reported that dietary vitamin E deficiency increased anxiety-like behaviour in rats exposed to social isolation. Here, we performed a detailed investigation of this phenomenon and its underlying mechanism. First, we fed Wistar rats with a vitamin E-free diet for 3 d, 1 week or 2 weeks and found an increase in anxiety-like behaviour after 1 and 2 weeks of vitamin E deficiency based on behavioural indicators. Next, we examined the effect of a control diet (150 mg all-racemic α-tocopheryl acetate/kg) on anxiety-like behaviours in rats that received a 4-week vitamin E-free diet. We found that increased anxiety-like behaviour was reversed to control levels after refeeding vitamin E for 7 d but not for 1 or 3 d. Further, anxiety-like behaviour increased or decreased gradually based on the amount of vitamin E intake; however, it had a quicker progression than physical symptoms of vitamin E deficiency. Moreover, rats fed with excess vitamin E (500 mg all-racemic α-tocopherol/kg diet) showed less anxiety-like behaviour than control rats, indicating that vitamin E supplementation is effective for preventing anxiety increase under social isolation stress. Since plasma corticosterone levels were higher in vitamin E-deficient rats, we investigated the effect of adrenalectomy on anxiety-like behaviour and found that adrenal hormones played an essential role in the increased anxiety-like behaviour induced by vitamin E deficiency. In conclusion, increased anxiety-like behaviour is a symptom that emerges earlier than physical vitamin E deficiency and is caused by adrenal hormone-dependent mechanisms.
The hypothesis that tardive dyskinesias observed after long-term administration of neuroleptics are due to the formation of free radicals following this medication has prompted studies on the use of vitamin E (α-tocopherol), an antioxidant to treat patients suffering from such side-effects. The present study aimed at reproducing earlier encouraging results in treating 23 patients with vitamin E, using a double-blind crossover design. Inclusion criteria were: duration of tardive dyskinesia for at least 3 months, appearance of the symptoms during neuroleptic treatment or after stopping this kind of medication. The 10 subjects in the first group (Gl) were treated for 14 days with 1 200 mg vitamin E per day and then for 14 days with placebo. For the second group (G2) with 9 subjects, the treatment periods were inversed. The 2 dropouts in each group were not due to experimental problems: there was no complication due to vitamin E intake, or only negligible side-effects. Side-effects were rated on the AIM scale on days 0, 14 and 28. The results of the present study do not confirm earlier reports: there was no significant difference in the therapeutic effect between placebo and vitamin E in any of the groups. However, the fact of taking these symptoms into account in the physician-patient relationship has contributed significantly to a decrease of tardive dyskinesia in both groups, from the beginning until the end of the investigation period, during which both neuroleptic and tranquilizing treatments were kept constant. Further studies should include longer treatment periods with vitamin E or even test the preventive effect of vitamin E in the production of tardive dyskinesia by neuroleptics.
To evaluate the Child and Adult Care Food Program (CACFP) rule that allows a meat/meat alternative to replace the breakfast grain requirement three times per week.
Design:
A 5-week menu including breakfast, lunch and snack was developed with meat/meat alternative replacing the breakfast grain requirement three times per week. Menu nutrients based on the minimum requirements were compared with reference values representing the Acceptable Macronutrient Distribution Range for fat and a range of reference values representing two-thirds the Dietary Reference Intake for 3-year-olds and 4–5-year-olds. The meal pattern minimum requirements were compared with two-thirds of those recommended by the Dietary Guidelines for Americans (DGA).
Setting:
Evaluation took place between April and June 2019.
Participants:
Human subjects were not utilized.
Results:
The CACFP minimum grain requirement is well below the DGA reference value (0·5–1·5 v. 3·33 ounce-equivalents). Energy (2208·52 kJ) was below the reference values (3126·83–4362·53 kJ). Protein (34·43 g) was above the reference values (9·87–10·81 g). Carbohydrate (76·65 g), fibre (7·46 g) and vitamin E (1·69 mg) were below their reference values of 86·67 g, 10·46–14·60 g and 4–4·76 mg, respectively. Fat (22·57 %) was below the reference range (25–40 %).
Conclusions:
The CACFP rule which allows a meat/meat alternative to replace the breakfast grain requirement three times per week may result in meal patterns low in energy, carbohydrate, fat, fibre and vitamin E, while providing an excessive amount of protein.
Seeds of 15 diverse rice accessions, representing aus, indica, temperate japonica and tropical japonica subpopulations, were produced under temperate climate conditions in Korea and used for vitamin E analysis and seed storage experiments at 45°C and 10.9% seed moisture content. High γ-tocotrienol was significantly positively correlated with seed longevity. In addition, a high β-tocopherol proportion relative to δ-tocopherol was significantly negatively correlated with seed longevity. Using high-density single-nucleotide polymorphism marker data, DNA haplotype analysis showed clear allelic variations in the region of two S-adenosylmethionine synthetase genes: LOC_Os04g42095 and LOC_Os11g15410, which regulate the conversion of δ-tocopherol into β-tocopherol. Four indica accessions with rare and subpopulation-specific alleles showed a 2.3-fold lower β-/δ-tocopherol ratio compared with accessions from other subpopulations.
The role of fat-soluble vitamins in the pathology of type 2 diabetes needs further research. Possible protective effects could be expected for vitamins A and E via their antioxidant properties, vitamin K via its modulating effects on cytokines and insulin resistance and vitamin D via the enhancement of insulin sensitivity. However, the evidence on association between fat-soluble vitamins from diet and risk of diabetes is limited. Therefore, among 19 168 healthy Japanese of both sexes aged 40–79 years, we used the logistic regression analyses to examine the prospective association between FFQ-estimated dietary fat-soluble vitamins (A, K, E and D) and the risk of type 2 diabetes incident over a 5-year period. During this 5-year period, 494 new cases of diabetes were self-reported. Vitamins K and E from diet were associated with lowered risk of incident diabetes, whereas no associations with dietary intake of vitamin A or D were observed. The multivariable OR in the highest v. lowest quartiles of intakes were 0·71 (95 % CI 0·54, 0·93, Ptrend=0·01) for vitamin K and 0·72 (95 % CI 0·55, 0·95, Ptrend=0·02) for vitamin E. Mutual adjustment for dietary intake of these vitamins did not change the association. There were no interactions with sex, age, smoking status, BMI or having a family history of diabetes, P were >0·10. In conclusion, higher dietary intake of fat-soluble vitamins K and E, but not vitamin A or D, were associated with lowered risk of type 2 diabetes among Japanese population.
Synthetic α-tocopherol has eight isomeric configurations including four 2R (RSS, RRS, RSR, RRR) and four 2S (SRR, SSR, SRS, SSS). Only the RRR stereoisomer is naturally synthesised by plants. A ratio of 1·36:1 in biopotency of RRR-α-tocopheryl acetate to all-rac-α-tocopheryl acetate is generally accepted; however, studies indicate that neither biopotency of α-tocopherol stereoisomers nor bioavailability between them is constant, but depend on dose, time, animal species and organs. A total of forty growing young male mink were, after weaning, assigned one of the following treatments for 90 d: no α-tocopherol in diet (ALFA_0), 40 mg/kg RRR-α-tocopheryl acetate (NAT_40), 40 mg/kg all-rac-α-tocopheryl acetate (SYN_40) and 80 mg/kg feed all-rac-α-tocopheryl acetate (SYN_80). Mink were euthanised in CO2 and blood was collected by heart puncture. Mink were pelted and liver, heart, lungs, brain and abdominal fat were collected for α-tocopherol stereoisomer analysis. The proportion of RRR-α-tocopherol decreased in all organs and plasma with increasing amount of synthetic α-tocopherol stereoisomers in the diet (P≤0·05), whereas the proportion of all synthetic α-tocopherol stereoisomers increased with increasing amount of synthetic α-tocopherol stereoisomers in the diet (P≤0·05). The proportion of α-tocopherol stereoisomers in plasma, brain, heart, lungs and abdominal fat showed the following order: RRR>RRS, RSR, RSS>Σ2S, regardless of α-tocopherol supplement. The liver had the highest proportion of Σ2S stereoisomers, and lowest proportion of RRR-α-tocopherol. In conclusion, distribution of α-tocopherol stereoisomers differs with dose and form of α-tocopherol supplementation. The results did also reveal the liver’s role as the major organ for accumulation of Σ2S α-tocopherol stereoisomers.
Vitamin E and selenium have been reported to improve immune function across a range of species. Ewes lambing on poor-quality dry pasture in autumn in Western Australia are at risk of being deficient in vitamin E and selenium at lambing thus predisposing their lambs to deficiencies and increasing the risk of infection and disease. This study tested the hypotheses that (i) supplementation of autumn-lambing ewes with vitamin E plus selenium in late gestation will increase the concentrations of vitamin E and selenium in plasma in the ewe and lamb and (ii) that the increased concentrations of vitamin E and selenium in plasma in the lambs will improve their innate and adaptive immune responses and thus survival. Pregnant Merino ewes were divided into a control group (n=58) which received no supplementation or a group supplemented with vitamin E plus selenium (n=55). On days 111, 125 and 140 of pregnancy ewes in the vitamin E plus selenium group were given 4 g all-rac-α-tocopherol acetate orally. On day 111 the ewes were also given 60 mg of selenium as barium selenate by subcutaneous injection. The concentrations of α-tocopherol and selenium were measured in ewes and/or lambs from day 111 of pregnancy to 14 weeks of age±10 days (weaning). Immune function of the lamb was assessed by analysing the numbers and phagocytic capacities of monocytes and polymorphonuclear leucocytes and plasma IgG and anti-tetanus toxoid antibody concentrations between birth and 14 weeks of age±10 days. Maternal supplementation with vitamin E plus selenium increased the concentration of α-tocopherol in plasma (1.13 v. 0.67 mg/l; P<0.001) and selenium in whole blood (0.12 v. 0.07 mg/l; P<0.01) of the ewes at lambing compared with controls. Supplementation also increased the concentration of α-tocopherol (0.14 v. 0.08 mg/l; P<0.001) and selenium (0.08 v. 0.05 mg/l; P<0.01) in lambs at birth compared with controls. There was no significant effect of supplementation on immune function or survival in the lambs.
The objective was to evaluate the effects of dietary fish oil (FO) and vitamin E (VE) supplementation on sperm sensitivity to lipid peroxidation (LP) in dogs. Using an incomplete replicate 3 × 3 Latin square design, five dogs were allocated into three groups. One of the squares was incomplete and had two dogs that were used with three treatments. The dogs were assigned to three different treatments, fed a control diet of balanced commercial food (control group; CG), control diet supplemented with 54 mg FO/kg body weight0·75 per d (FO group; FG) and FO plus 400 mg VE per d (FO and VE group; FEG) for 60 d. Semen samples were collected on days 0 and 60 and divided into two halves, peroxidised and control, with or without ascorbate–Fe2+, respectively. LP was measured in both halves by chemiluminescence as counts per min/mg protein. Fatty acid profile was determined by GC. Data were analysed using the mixed procedure (SAS). On day 0, LP increased in all groups in the peroxidised samples (P < 0·05). However, on day 60 LP decreased in peroxidised samples of both the FG and FEG (P < 0·05), but there were no differences between the FG and FEG (P > 0·1). Additionally, on day 60 total n-3 was higher in the FG and FEG compared with the CG (P < 0·05). Supplementation with FO alone or together with VE decreased LP in peroxidised samples. These results could indicate a protective effect of n-3 on sperm. More studies are needed to understand the mechanism whereby FO and/or FO plus VE decrease LP in dogs’ sperm.
An experiment was conducted to investigate the effects of a high concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation on the performance, milk composition, and vital immunological variables and antioxidative parameters in sows and piglets. The experiment started on day 107 of gestation and lasted until the piglets were weaned on day 21 of lactation. 48 sows were divided into two groups and fed either a basal diet with 44 IU/kg of vitamin E or a basal diet supplemented with additional vitamin E, total content of 250 IU/kg. Sow milk and blood samples were obtained on day 0 (farrowing) and on day 21 of lactation. One 21-day-old piglet per litter was selected to collect plasma. Results showed that supplementation of the maternal diet with 250 IU/kg vitamin E improved the average daily gain (ADG) and weaning weight of piglets (P < 0·05), and the concentrations of immunoglobulin G (IgG) and immunoglobulin A (IgA) in sow plasma, colostrum and milk. The concentrations of fat in the colostrum and milk were significantly increased by supplementation with 250 IU/kg of vitamin E (P < 0·05). The level of plasma IgG, IgA, total antioxidant capacity (T-AOC) and catalase (CAT) were all higher (P < 0·05) in piglets from sows that were fed 250 IU/kg of vitamin E than in those from the control group. The high concentration of vitamin E supplementation to the sows enhanced the concentrations of α-tocopherol in the sow milk and plasma as well as piglet plasma (P < 0·05). In conclusion, the addition to the maternal diet of vitamin E at high concentration improved the weight of piglets at weaning, and enhanced humoral immune function and antioxidant activity in sows and piglets.