Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T17:23:53.238Z Has data issue: false hasContentIssue false

Parameterising ecological validity and integrating individual differences within second-person neuroscience

Published online by Cambridge University Press:  25 July 2013

Bhismadev Chakrabarti*
Affiliation:
Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, United Kingdom. b.chakrabarti@reading.ac.ukhttp://www.bhismalab.org

Abstract

This commentary situates the second person account within a broader framework of ecological validity for experimental paradigms in social cognitive neuroscience. It then considers how individual differences at psychological and genetic levels can be integrated within the proposed framework.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayliss, A. P. & Tipper, S. P. (2005) Gaze and arrow cueing of attention reveals individual differences along the autism spectrum as a function of target context. British Journal of Psychology 96(1):95114.CrossRefGoogle ScholarPubMed
Blair, R., Morris, J., Frith, C., Perrett, D. & Dolan, R. (1999) Dissociable neural responses to facial expressions of sadness and anger. Brain 122:883–93.Google Scholar
Chakrabarti, B. & Baron-Cohen, S. (2011) Variation in the human Cannabinoid Receptor (CNR1) gene modulates gaze duration for happy faces. Molecular Autism 2(1):10. Available at: http://dx.doi.org/10.1186/2040-2392-2-10.Google Scholar
Chakrabarti, B., Dudbridge, F., Kent, L., Wheelwright, S., Hill Cawthorne, G., Allison, C., Banerjee Basu, S. & Baron-Cohen, S. (2009) Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Research 2(3):157–77.Google Scholar
Chakrabarti, B., Kent, L., Suckling, J., Bullmore, E. & Baron-Cohen, S. (2006) Variations in the human cannabinoid receptor (CNR1) gene modulate striatal responses to happy faces. European Journal of Neuroscience 23(7):1944–48.Google Scholar
Chaminade, T., Hodgins, J. & Kawato, M. (2007) Anthropomorphism influences perception of computer-animated characters' actions. Social Cognitive and Affective Neuroscience 2(3):206–16.Google Scholar
Chartrand, T. L. & Bargh, J. A. (1999) The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology 76(6):893910. Available at: http://dx.doi.org/10.1037/0022-3514.76.6.893.Google Scholar
Fox, E. (2000) Facial expressions of emotion: Are angry faces detected more efficiently? Cognition and Emotion 14(1):6192.Google Scholar
Kilner, J., Hamilton, A. F. C. & Blakemore, S. J. (2007) Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience 2 (3–4):158–66.Google Scholar
Kohls, G., Peltzer, J., Herpertz-Dahlmann, B. & Konrad, K. (2009) Differential effects of social and non-social reward on response inhibition in children and adolescents. Developmental Science 12(4):614–25.Google Scholar
LaBar, K., Crupain, M., Voyvodic, J. & McCarthy, G. (2003) Dynamic perception of facial affect and identity in the human brain. Cerebral Cortex 13(10):1023–33.Google Scholar
Morris, J., Frith, C., Perrett, D., Rowland, D., Young, A., Calder, A. & Dolan, R. (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–15.CrossRefGoogle ScholarPubMed
Pfeiffer, U. J., Timmermans, B., Bente, G., Vogeley, K. & Schilbach, L. (2011) The non-verbal Turing test: Differentiating mind from machine in gaze-based social interaction. PLoS ONE 6(11):e27591. Available at: http://dx.doi.org/10.1371/journal.pone.0027591.Google Scholar
Sims, T. B., Van Reekum, C. M., Johnstone, T. & Chakrabarti, B. (2012) How reward modulates mimicry: EMG evidence of greater facial mimicry of more rewarding happy faces. Psychophysiology 49(7):9981004.CrossRefGoogle ScholarPubMed
Weibel, D., Wissmath, B., Habegger, S., Steiner, Y. & Groner, R. (2008) Playing online games against computer-versus human-controlled opponents: Effects on presence, flow, and enjoyment. Computers in Human Behavior 24(5):2274–91.Google Scholar
Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B. & Jenike, M. A. (1998) Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. The Journal of Neuroscience 18:411–18.Google Scholar
Zaki, J., Bolger, N. & Ochsner, K. (2008) It takes two: The interpersonal nature of empathic accuracy. Psychological Science 19(4):399404.Google Scholar