No CrossRef data available.
Article contents
Developmental antecedents of representing “group” behavior: A commentary on Pietraszewski's theory of groups
Published online by Cambridge University Press: 07 July 2022
Abstract
Central to Pietraszewski's theory is a set of group-constitutive roles within four triadic primitives. Although some data from the developmental and biological sciences support Pietraszewski's theory, other data raise questions about whether similar behavioral expectations hold across various ecological conditions and interactions. We discuss the potential for a broader set of conceptual primitives that support reasoning about groups.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press
References
Avilés, L. (2002). Solving the freeloaders paradox: Genetic associations and frequency-dependent selection in the evolution of cooperation among nonrelatives. Proceedings of the National Academy of Sciences, 99(22), 14268–14273.CrossRefGoogle ScholarPubMed
Avilés, L., Fletcher, J. A., & Cutter, A. D. (2004). The kin composition of social groups: Trading group size for degree of altruism. The American Naturalist, 164(2), 132–144.CrossRefGoogle ScholarPubMed
Batchelor, T. P., & Briffa, M. (2011). Fight tactics in wood ants: Individuals in smaller groups fight harder but die faster. Proceedings of the Royal Society B: Biological Sciences, 278(1722), 3243–3250.CrossRefGoogle ScholarPubMed
Bian, L., Sloane, S., & Baillargeon, R. (2018). Infants expect ingroup support to override fairness when resources are limited. Proceedings of the National Academy of Sciences, 115(11), 2705–271.CrossRefGoogle ScholarPubMed
Bonner, J. T. (1982). Evolutionary strategies and developmental constraints in the cellular slime molds. The American Naturalist, 119(4), 530–552.CrossRefGoogle Scholar
Chapman, C. A., & Teichroeb, J. A. (2012). What influences the size of groups in which primates choose to live. Nature Education Knowledge, 3(10), 9.Google Scholar
De Dreu, C. K., Gross, J., Méder, Z., Giffin, M., Prochazkova, E., Krikeb, J., & Columbus, S. (2016). In-group defense, out-group aggression, and coordination failures in intergroup conflict. Proceedings of the National Academy of Sciences, 113(38), 10524–10529.CrossRefGoogle ScholarPubMed
Frank, S. A. (2003). Repression of competition and the evolution of cooperation. Evolution, 57(4), 693–705.Google ScholarPubMed
Jin, K. S., & Baillargeon, R. (2017). Infants possess an abstract expectation of ingroup support. Proceedings of the National Academy of Sciences, 114(31), 8199–8204.CrossRefGoogle ScholarPubMed
Krause, J., Ruxton, G. D., Ruxton, G., & Ruxton, I. G. (2002). Living in groups. Oxford University Press.Google Scholar
Lindstedt, C., Miettinen, A., Freitak, D., Ketola, T., López-Sepulcre, A., Mäntylä, E., & Pakkanen, H. (2018). Ecological conditions alter cooperative behaviour and its costs in a chemically defended sawfly. Proceedings of the Royal Society B, 285(1884), 20180466.CrossRefGoogle Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behaviour, 47(2), 379–387.CrossRefGoogle Scholar
Pun, A., Birch, S. A., & Baron, A. S. (2016). Infants use relative numerical group size to infer social dominance. Proceedings of the National Academy of Sciences, 113(9), 2376–2381.CrossRefGoogle ScholarPubMed
Pun, A., Birch, S. A., & Baron, A. S. (2021). The power of allies: Infants’ expectations of social obligations during intergroup conflict. Cognition, 211, 104630.CrossRefGoogle ScholarPubMed
Rhodes, M., & Brickman, D. (2011). The influence of competition on children's social categories. Journal of Cognition and Development, 12(2), 194–221.CrossRefGoogle Scholar
Rhodes, M., Hetherington, C., Brink, K., & Wellman, H. M. (2015). Infants’ use of social partnerships to predict behavior. Developmental Science, 18(6), 909–916.CrossRefGoogle ScholarPubMed
Rullo, M., Presaghi, F., & Livi, S. (2015). Reactions to ingroup and outgroup deviants: An experimental group paradigm for black sheep effect. PLoS ONE, 10(5), e0125605.CrossRefGoogle ScholarPubMed
Rusch, H. (2013). Asymmetries in altruistic behavior during violent intergroup conflict. Evolutionary Psychology, 11(5), 973–993.CrossRefGoogle ScholarPubMed
Ting, F., He, Z., & Baillargeon, R. (2019). Toddlers and infants expect individuals to refrain from helping an ingroup victim's aggressor. Proceedings of the National Academy of Sciences, 116(13), 6025–6034.CrossRefGoogle ScholarPubMed
Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2001). Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees?. Animal Behaviour, 61(6), 1203–1216.CrossRefGoogle Scholar
Target article
Toward a computational theory of social groups: A finite set of cognitive primitives for representing any and all social groups in the context of conflict
Related commentaries (29)
A neuroscientific perspective on the computational theory of social groups
Advantages and limitations of representing groups in terms of recursive utilities
Are we there yet? Every computational theory needs a few black boxes, including theories about groups
Beyond folk-sociology: Extending Pietraszewski's model to large-group dynamics
Can group representations based on relational cues warrant the rich inferences typically drawn from group membership?
Coalitionary psychology and group dynamics on social media
Compassion within conflict: Toward a computational theory of social groups informed by maternal brain physiology
Conciliation and meta-contrast are important for understanding how people assign group memberships during conflict situations
Developmental antecedents of representing “group” behavior: A commentary on Pietraszewski's theory of groups
Group? What group? A computational model of the group needs a psychology of “us” (not “them”)
How do we know who may replace each other in triadic conflict roles?
Interacting with others while reacting to the environment
Internal versus external group conflicts
Latent structure learning as an alternative computation for group inference
Learning agents that acquire representations of social groups
More than one way to skin a cat: Addressing the arbitration problem in developmental science
On vagueness and parochialism in psychological research on groups
Paranoia reveals the complexity in assigning individuals to groups on the basis of inferred intentions
Private versus public: A dual model for resource-constrained conflict representations
Psychological and actual group formation: Conflict is neither necessary nor sufficient
Shadow banning, astroturfing, catfishing, and other online conflicts where beliefs about group membership diverge
Shared intentionality and the representation of groups; or, how to build a socially adept robot
Signals and cues of social groups
Social groups and the computational conundrums of delays, proximity, and loyalty
Societies and other kinds of social groups
The labelled container: Conceptual development of social group representations
Towards a computational network theory of social groups
Triadic conflict “primitives” can be reduced to welfare trade-off ratios
Using laboratory intergroup conflict and riots as a “stress test”
Author response
More “us,” less “them”: An appeal for pluralism – and stand-alone computational theorizing – in our science of social groups