We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Early investigation of Pólya urns considered drawing balls one at a time. In the last two decades, several authors have considered multiple drawing in each step, but mostly for schemes involving two colors. In this manuscript, we consider multiple drawing from urns of balls of multiple colors, formulating asymptotic theory for specific urn classes and addressing more applications. The class we consider is affine and tenable, built around a ‘core’ square matrix. We examine cases where the urn is irreducible and demonstrate its relationship to matrix irreducibility for its core matrix, with examples provided. An index for the drawing schema is derived from the eigenvalues of the core. We identify three regimes: small, critical, and large index. In the small-index regime, we find an asymptotic Gaussian law. In the critical-index regime, we also find an asymptotic Gaussian law, albeit with a difference in the scale factor, which involves logarithmic terms. In both of these regimes, we have explicit forms for the structure of the mean and the covariance matrix of the composition vector (both exact and asymptotic). In all three regimes we have strong laws.
We use Stein’s method to obtain distributional approximations of subgraph counts in the uniform attachment model or random directed acyclic graph; we provide also estimates of rates of convergence. In particular, we give uni- and multi-variate Poisson approximations to the counts of cycles and normal approximations to the counts of unicyclic subgraphs; we also give a partial result for the counts of trees. We further find a class of multicyclic graphs whose subgraph counts are a.s. bounded as $n\to \infty$.
We determine the order of the k-core in a large class of dense graph sequences. Let $G_n$ be a sequence of undirected, n-vertex graphs with edge weights $\{a^n_{i,j}\}_{i,j \in [n]}$ that converges to a graphon $W\colon[0,1]^2 \to [0,+\infty)$ in the cut metric. Keeping an edge (i,j) of $G_n$ with probability ${a^n_{i,j}}/{n}$ independently, we obtain a sequence of random graphs $G_n({1}/{n})$. Using a branching process and the theory of dense graph limits, under mild assumptions we obtain the order of the k-core of random graphs $G_n({1}/{n})$. Our result can also be used to obtain the threshold of appearance of a k-core of order n.
As a generalization of random recursive trees and preferential attachment trees, we consider random recursive metric spaces. These spaces are constructed from random blocks, each a metric space equipped with a probability measure, containing a labelled point called a hook, and assigned a weight. Random recursive metric spaces are equipped with a probability measure made up of a weighted sum of the probability measures assigned to its constituent blocks. At each step in the growth of a random recursive metric space, a point called a latch is chosen at random according to the equipped probability measure, and a new block is chosen at random and attached to the space by joining together the latch and the hook of the block. We use martingale theory to prove a law of large numbers and a central limit theorem for the insertion depth, the distance from the master hook to the latch chosen. We also apply our results to further generalizations of random trees, hooking networks, and continuous spaces constructed from line segments.
We investigate here the behaviour of a large typical meandric system, proving a central limit theorem for the number of components of a given shape. Our main tool is a theorem of Gao and Wormald that allows us to deduce a central limit theorem from the asymptotics of large moments of our quantities of interest.
We show joint convergence of the Łukasiewicz path and height process for slightly supercritical Galton–Watson forests. This shows that the height processes for supercritical continuous-state branching processes as constructed by Lambert (2002) are the limit under rescaling of their discrete counterparts. Unlike for (sub-)critical Galton–Watson forests, the height process does not encode the entire metric structure of a supercritical Galton–Watson forest. We demonstrate that this result is nonetheless useful, by applying it to the configuration model with an independent and identically distributed power-law degree sequence in the critical window, of which we obtain the metric space scaling limit in the product Gromov–Hausdorff–Prokhorov topology, which is of independent interest.
The asymptotic behavior of the Jaccard index in G(n, p), the classical Erdös–Rényi random graph model, is studied as n goes to infinity. We first derive the asymptotic distribution of the Jaccard index of any pair of distinct vertices, as well as the first two moments of this index. Then the average of the Jaccard indices over all vertex pairs in G(n, p) is shown to be asymptotically normal under an additional mild condition that $np\to\infty$ and $n^2(1-p)\to\infty$.
We show that the independence number of $ G_{n,p}$ is concentrated on two values if $ n^{-2/3+ \epsilon } < p \le 1$. This result is roughly best possible as an argument of Sah and Sawhney shows that the independence number is not, in general, concentrated on two values for $ p = o ( (\log (n)/n)^{2/3} )$. The extent of concentration of the independence number of $ G_{n,p}$ for $ \omega (1/n) < p \le n^{-2/3}$ remains an interesting open question.
The factorially normalized Bernoulli polynomials $b_n(x) = B_n(x)/n!$ are known to be characterized by $b_0(x) = 1$ and $b_n(x)$ for $n \gt 0$ is the anti-derivative of $b_{n-1}(x)$ subject to $\int _0^1 b_n(x) dx = 0$. We offer a related characterization: $b_1(x) = x - 1/2$ and $({-}1)^{n-1} b_n(x)$ for $n \gt 0$ is the $n$-fold circular convolution of $b_1(x)$ with itself. Equivalently, $1 - 2^n b_n(x)$ is the probability density at $x \in (0,1)$ of the fractional part of a sum of $n$ independent random variables, each with the beta$(1,2)$ probability density $2(1-x)$ at $x \in (0,1)$. This result has a novel combinatorial analog, the Bernoulli clock: mark the hours of a $2 n$ hour clock by a uniformly random permutation of the multiset $\{1,1, 2,2, \ldots, n,n\}$, meaning pick two different hours uniformly at random from the $2 n$ hours and mark them $1$, then pick two different hours uniformly at random from the remaining $2 n - 2$ hours and mark them $2$, and so on. Starting from hour $0 = 2n$, move clockwise to the first hour marked $1$, continue clockwise to the first hour marked $2$, and so on, continuing clockwise around the Bernoulli clock until the first of the two hours marked $n$ is encountered, at a random hour $I_n$ between $1$ and $2n$. We show that for each positive integer $n$, the event $( I_n = 1)$ has probability $(1 - 2^n b_n(0))/(2n)$, where $n! b_n(0) = B_n(0)$ is the $n$th Bernoulli number. For $ 1 \le k \le 2 n$, the difference $\delta _n(k)\,:\!=\, 1/(2n) -{\mathbb{P}}( I_n = k)$ is a polynomial function of $k$ with the surprising symmetry $\delta _n( 2 n + 1 - k) = ({-}1)^n \delta _n(k)$, which is a combinatorial analog of the well-known symmetry of Bernoulli polynomials $b_n(1-x) = ({-}1)^n b_n(x)$.
An n-vertex graph is called C-Ramsey if it has no clique or independent set of size $C\log _2 n$ (i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of a C-Ramsey graph. This brings together two ongoing lines of research: the study of ‘random-like’ properties of Ramsey graphs and the study of small-ball probability for low-degree polynomials of independent random variables.
The proof proceeds via an ‘additive structure’ dichotomy on the degree sequence and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics and low-rank approximation. In particular, a key ingredient is a new sharpened version of the quadratic Carbery–Wright theorem on small-ball probability for polynomials of Gaussians, which we believe is of independent interest. One of the consequences of our result is the resolution of an old conjecture of Erdős and McKay, for which Erdős reiterated in several of his open problem collections and for which he offered one of his notorious monetary prizes.
We propose a modification to the random destruction of graphs: given a finite network with a distinguished set of sources and targets, remove (cut) vertices at random, discarding components that do not contain a source node. We investigate the number of cuts required until all targets are removed, and the size of the remaining graph. This model interpolates between the random cutting model going back to Meir and Moon (J. Austral. Math. Soc.11, 1970) and site percolation. We prove several general results, including that the size of the remaining graph is a tight family of random variables for compatible sequences of expander-type graphs, and determine limiting distributions for binary caterpillar trees and complete binary trees.
In this paper we study a variation of the random $k$-SAT problem, called polarised random $k$-SAT, which contains both the classical random $k$-SAT model and the random version of monotone $k$-SAT another well-known NP-complete version of SAT. In this model there is a polarisation parameter $p$, and in half of the clauses each variable occurs negated with probability $p$ and pure otherwise, while in the other half the probabilities are interchanged. For $p=1/2$ we get the classical random $k$-SAT model, and at the other extreme we have the fully polarised model where $p=0$, or 1. Here there are only two types of clauses: clauses where all $k$ variables occur pure, and clauses where all $k$ variables occur negated. That is, for $p=0$, and $p=1$, we get an instance of random monotone$k$-SAT.
We show that the threshold of satisfiability does not decrease as $p$ moves away from $\frac{1}{2}$ and thus that the satisfiability threshold for polarised random $k$-SAT with $p\neq \frac{1}{2}$ is an upper bound on the threshold for random $k$-SAT. Hence the satisfiability threshold for random monotone $k$-SAT is at least as large as for random $k$-SAT, and we conjecture that asymptotically, for a fixed $k$, the two thresholds coincide.
We study the problem of finding the root vertex in large growing networks. We prove that it is possible to construct confidence sets of size independent of the number of vertices in the network that contain the root vertex with high probability in various models of random networks. The models include uniform random recursive dags and uniform Cooper-Frieze random graphs.
We prove that if a unimodular random graph is almost surely planar and has finite expected degree, then it has a combinatorial embedding into the plane which is also unimodular. This implies the claim in the title immediately by a theorem of Angel, Hutchcroft, Nachmias and Ray [2]. Our unimodular embedding also implies that all the dichotomy results of [2] about unimodular maps extend in the one-ended case to unimodular random planar graphs.
We study the asymptotic behaviour of the expectation of the maxima and minima of a random assignment process generated by a large matrix with multinomial entries. A variety of results is obtained for different sparsity regimes.
An edge flipping is a non-reversible Markov chain on a given connected graph, as defined in Chung and Graham (2012). In the same paper, edge flipping eigenvalues and stationary distributions for some classes of graphs were identified. We further study edge flipping spectral properties to show a lower bound for the rate of convergence in the case of regular graphs. Moreover, we show by a coupling argument that a cutoff occurs at $\frac{1}{4} n \log n$ for the edge flipping on the complete graph.
We study the coupon collector’s problem with group drawings. Assume there are n different coupons. At each time precisely s of the n coupons are drawn, where all choices are supposed to have equal probability. The focus lies on the fluctuations, as $n\to\infty$, of the number $Z_{n,s}(k_n)$ of coupons that have not been drawn in the first $k_n$ drawings. Using a size-biased coupling construction together with Stein’s method for normal approximation, a quantitative central limit theorem for $Z_{n,s}(k_n)$ is shown for the case that $k_n=({n/s})(\alpha\log(n)+x)$, where $0<\alpha<1$ and $x\in\mathbb{R}$. The same coupling construction is used to retrieve a quantitative Poisson limit theorem in the boundary case $\alpha=1$, again using Stein’s method.
In this paper we study the asymptotic behaviour of a random uniform parking function $\pi_n$ of size n. We show that the first $k_n$ places $\pi_n(1),\ldots,\pi_n(k_n)$ of $\pi_n$ are asymptotically independent and identically distributed (i.i.d.) and uniform on $\{1,2,\ldots,n\}$, for the total variation distance when $k_n = {\rm{o}}(\sqrt{n})$, and for the Kolmogorov distance when $k_n={\rm{o}}(n)$, improving results of Diaconis and Hicks. Moreover, we give bounds for the rate of convergence, as well as limit theorems for certain statistics such as the sum or the maximum of the first $k_n$ parking places. The main tool is a reformulation using conditioned random walks.
Two ensembles are frequently used to model random graphs subject to constraints: the microcanonical ensemble (= hard constraint) and the canonical ensemble (= soft constraint). It is said that breaking of ensemble equivalence (BEE) occurs when the specific relative entropy of the two ensembles does not vanish as the size of the graph tends to infinity. Various examples have been analysed in the literature. It was found that BEE is the rule rather than the exception for two classes of constraints: sparse random graphs when the number of constraints is of the order of the number of vertices, and dense random graphs when there are two or more constraints that are frustrated. We establish BEE for a third class: dense random graphs with a single constraint on the density of a given simple graph. We show that BEE occurs in a certain range of choices for the density and the number of edges of the simple graph, which we refer to as the BEE-phase. We also show that, in part of the BEE-phase, there is a gap between the scaling limits of the averages of the maximal eigenvalue of the adjacency matrix of the random graph under the two ensembles, a property that is referred to as the spectral signature of BEE. We further show that in the replica symmetric region of the BEE-phase, BEE is due to the coexistence of two densities in the canonical ensemble.
We study (asymmetric) $U$-statistics based on a stationary sequence of $m$-dependent variables; moreover, we consider constrained $U$-statistics, where the defining multiple sum only includes terms satisfying some restrictions on the gaps between indices. Results include a law of large numbers and a central limit theorem, together with results on rate of convergence, moment convergence, functional convergence, and a renewal theory version.
Special attention is paid to degenerate cases where, after the standard normalization, the asymptotic variance vanishes; in these cases non-normal limits occur after a different normalization.
The results are motivated by applications to pattern matching in random strings and permutations. We obtain both new results and new proofs of old results.