We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Individuals with Parkinson's disease (PD) have varying trajectories of cognitive decline. One reason for this heterogeneity may be "cognitive reserve": where higher education/IQ/current mental engagement compensates for increasing brain burden (Stern et al., 2020). With few exceptions, most studies examining cognitive reserve in PD fail to include brain metrics. This study's goal was to examine whether cognitive reserve moderated the relationship between neuroimaging indices of brain burden (diffusion free water fraction and T2-weighted white matter changes) and two commonly impaired domains in PD: executive function and memory. We hypothesized cognitive reserve would mitigate the relationship between higher brain burden and worse cognitive performance.
Participants and Methods:
Participants included 108 individuals with PD without dementia (age mean=67.9±6.3, education mean=16.6±2.5) who were prospectively recruited for two NIH-funded projects at the University of Florida. All received neuropsychological measures of executive function (Trails B, Stroop, Letter Fluency) and memory (delayed recall: Hopkin's Verbal Learning Test-Revised, WMS-III Logical Memory). Domain specific z-score composites were created using data from age/education matched non-PD peer controls (N=62). For the Cognitive Reserve (CR) proxy, a z-score composite included years of education, WASI-II Vocabulary, and Wechsler Test of Adult Reading. At the time of testing, participants completed multiple MRI scans (T1-weighted, diffusion, Fluid Attenuated Inversion Recovery) from which the following were extracted: 1) whole-brain free water within the white matter (a measure of microstructural integrity and neuroinflammation), 2) white matter hyperintensities/white matter total volume (WMH/WMV), and bilaterally-averaged edge weights of white matter connectivity between 3) dorsolateral prefrontal cortex and caudate and 4) entorhinal cortex and hippocampi. Separate linear regressions for each brain metric used executive function and memory composites as dependent variables; predictors were age, CR proxy, respective brain metric, and a residual centered interaction term (brain metric*CR proxy). Identical models were run in dichotomized short and long disease duration groups (median split=6 years).
Results:
In all models, a lower CR proxy significantly predicted worse executive function (WMH/WMV: beta=0.49, free water: beta=0.54, frontal edge weight: beta=0.49, p's<0.001) and memory (WMH/WMV: beta=0.42, free water: beta=0.35, temporal edge weight: beta=0.39, p's <0.01). For neuroimaging metrics, higher free water significantly predicted worse executive function (beta=-0.39, p=0.002) but not memory. No other brain metrics were significant predictors of either domain. Accounting for PD duration, higher free water predicted worse executive function for those with both short (beta=-0.49, p=0.04) and long disease duration (beta=-0.48, p=0.02). Specifically in those with long disease duration, higher free water (beta=-0.57 p=0.02) and lower edge weights between entorhinal cortex and hippocampi (beta=0.30, p=0.03) predicted worse memory. Overall, no models contained significant interactions between the CR proxy and any brain metric.
Conclusions:
Results replicate previous work showing that a cognitive reserve proxy relates to cognition. However, cognitive reserve did not moderate brain burden's relationship to cognition. Across the sample, greater neuroinflammation was associated with worse executive function. For those with longer disease duration, higher neuroinflammation and lower medial temporal white matter connectivity related to worse memory. Future work should examine other brain burden metrics to determine whether/how cognitive reserve influences the cognitive trajectory of PD.
Deep Brain Stimulation (DBS) is an FDA-approved treatment for Parkinson's Disease (PD), for which the medical workup includes routine pre- and post- operative neuropsychological assessment to determine potential surgical cognitive risk. Existing research suggests that cognitively normal individuals experience good cognitive outcome, whereas those with pre-existing cognitive deficits are prone to accelerated cognitive decline post-DBS. The goal of this study is to identify characteristics that determine which individuals with PD are at risk for accelerated post-DBS cognitive loss, and to characterize the nature of the decline in this population.
Participants and Methods:
We conducted a retrospective chart review of PD- DBS patients who completed their DBS workup and surgery at Mount Sinai Hospital NYC between 2015 and 2022. Non-English speakers were excluded from this study due to small sample size and use of a neurocognitive battery different from that of English speakers. Using repeated measures t-tests, chi square, and regression analyses, we explored variables related to disease (e.g., duration, L-Dopa burden, DBS target), socio-demographic background (e.g., age onset, current age, education), assessment modality (telehealth vs in-office), neurocognitive performances (e.g., WMS-IV Logical Memory (LM), HVLT-R, WASI-II Matrix & Similarities, WAIS-IV Digit Span), and cognitive diagnosis (amnestic vs non-amnestic MCI) for all individuals in the sample. At the individual level, we utilized Reliable Change Indices (RCI) to identify clinically significant cognitive differences from pre- to post-DBS exam. We considered LM- Delayed Recall (LMDR) as a proxy for memory loss, as this cognitive function is expected to remain generally unchanged post PD-DBS. Therefore, decline on this measure in the first year after DBS could indicate a change in global memory function and possible evidence of accelerated postoperative decline.
Results:
Of 65 charts reviewed, 44 patients were native English-speaking and included in our analyses. At the group level, there were no significant differences in disease characteristics, socio-demographic variables, or cognitive classification between those who declined versus those who did not decline on LMDR. Regression statistics for predictors of cognitive decline also were non-significant. Of the eight individuals who declined on LMDR, one patient declined on a total of one neuropsychological measure, four declined on a total of two measures, two declined on a total of three measures, and one declined on a total of four measures. Two of these eight individuals had a diagnosis that changed to amnestic MCI based on concomitant interval history of ADL compromise. Of these two individuals, one declined in two tests and the other declined in four tests. Six of the eight individuals who declined also showed abnormalities in their imaging with either edema or hemorrhage.
Conclusions:
Our analysis is unique in that we explored cognitive decline at both the group and individual levels. Despite this, we did not find predictors of post-DBS cognitive decline. Further detailed analysis of additional post-operative factors that might play a greater role in our understanding of this phenomenon is warranted. This said, our data do support that the majority of individuals with non-amnestic MCI did not decline cognitively.
Parkinsonism and Parkinson's disease (PD) have been described as consequences of repetitive head impacts (RHI) from boxing, since 1928. Autopsy studies have shown that RHI from other contact sports can also increase risk for neurodegenerative diseases, including chronic traumatic encephalopathy (CTE) and Lewy bodies. In vivo research on the relationship between American football play and PD is scarce, with small samples, and equivocal findings. This study leveraged the Fox Insight study to evaluate the association between American football and parkinsonism and/or PD Diagnosis and related clinical outcomes.
Participants and Methods:
Fox Insight is an online study of people with and without PD who are 18+ years (>50,000 enrolled). Participants complete online questionnaires on motor function, cognitive function, and general health behaviors. Participants self-reported whether they "currently have a diagnosis of Parkinson's disease, or parkinsonism, by a physician or other health care professional." In November 2020, the Boston University Head Impact Exposure Assessment was launched in Fox Insight for large-scale data collection on exposure to RHI from contact sports and other sources. Data used in this abstract were obtained from the Fox Insight database https://foxinsight-info.michaeljfox.org/insight/explore/insight.jsp on 01/06/2022. The sample includes 2018 men who endorsed playing an organized sport. Because only 1.6% of football players were women, analyses are limited to men. Responses to questions regarding history of participation in organized football were examined. Other contact and/or non-contact sports served as the referent group. Outcomes included PD status (absence/presence of parkinsonism or PD) and Penn Parkinson's Daily Activities Questionnaire-15 (PDAQ-15) for assessment of cognitive symptoms. Binary logistic regression tested associations between history and years of football play with PD status, controlling for age, education, current heart disease or diabetes, and family history of PD. Linear regressions, controlling for these variables, were used for the PDAQ-15.
Results:
Of the 2018 men (mean age=67.67, SD=9.84; 10, 0.5% Black), 788 (39%) played football (mean years of play=4.29, SD=2.88), including 122 (16.3%) who played youth football, 494 (66.0%) played high school, 128 (17.1%) played college football, and 5 (0.7%) played at the semi-professional or professional level. 1738 (86.1%) reported being diagnosed with parkinsonism/PD, and 707 of these were football players (40.7%). History of playing any level of football was associated with increased odds of having a reported parkinsonism or PD diagnosis (OR=1.52, 95% CI=1.14-2.03, p=0.004). The OR remained similar among those age <69 (sample median age) (OR=1.45, 95% CI=0.97-2.17, p=0.07) and 69+ (OR=1.45, 95% CI=0.95-2.22, p=0.09). Among the football players, there was not a significant association between years of play and PD status (OR=1.09, 95% CI=1.00-1.20, p=0.063). History of football play was not associated with PDAQ-15 scores (n=1980) (beta=-0.78, 95% CI=-1.59-0.03, p=0.059) among the entire sample.
Conclusions:
Among 2018 men from a data set enriched for PD, playing organized football was associated with increased odds of having a reported parkinsonism/PD diagnosis. Next steps include examination of the contribution of traumatic brain injury and other sources of RHI (e.g., soccer, military service).
Cognitive decline is a common non-motor feature of Parkinson's disease (PD). However, the underlying mechanisms of cognitive impairment in PD require further elucidation. FDG PET imaging data analyses have revealed distinct brain metabolic patterns associated with the cognitive features of PD. The PD cognition-related pattern (PDCP) and default mode network (DMN) are two overlapping, but topographically distinct, networks that may serve as biomarkers of cognitive decline in PD. Decreased activity of the resting-state DMN and increased expression of the PDCP are associated with cognitive impairment in PD. Studies have consistently demonstrated the association between neuropsychological memory test performance and PDCP expression. Thus, we examined whether memory performance could offer additional value in predicting PDCP expression in PD patients. We hypothesized that DMN and memory performance would predict greater variance in PDCP expression than the DMN alone.
Participants and Methods:
Participants included 48 PD patients ages 46-80 (mean (SD) Age: 61.9 (8.1), Education: 15.0 (2.8), IQ: 112.5 (14.9), DRS total: 136.7 (5.8)). All participants completed the FDG PET and neuropsychological evaluation 8-12 hours after their last dose of Levodopa. Neuropsychological memory testing included the California Verbal Learning Test (CVLT) z score of sum of learning trials. PDCP and DMN values were z scores generated from normal controls in previous studies. Data were analyzed using linear regression analyses.
Results:
A hierarchical regression was performed to predict PDCP as a function of DMN and CVLT learning performance. Variables were entered in two separate blocks. The first block included DMN as a predictor, and the overall regression was significant (R2 = 0.55, F(1, 39)= 47.0, p < 0.001). As hypothesized, DMN significantly predicted PCDP expression (β= -0.74, p < 0.001). The second block of the regression included CVLT learning memory performance. Both DMN and CVLT performance explained a significant amount of variance in PDCP (R2 change = 0.05, F(2, 39)= 27.6, p < 0.001). CVLT performance significantly predicted PDCP (β= -0.22, p =0.048). The final model accounted for 60.0% of the variance inPDCP.
Conclusions:
Disruptions in functional connectivity within brain networks have become increasingly recognized as mechanisms responsible for cognitive impairment in patients. As demonstrated in previous studies, our results indicated that DMN loss is a strong predictor of PDCP expression, likely due to the networks' overlapping spatial regions. However, we found that the addition of memory performance to the model could explain a small amount of variance (5%) over and above DMN expression. Overall, the current findings demonstrate a functional (i.e., learning) distinction between population-specific (PDCP) and more general brain networks (DMN).
Cardiovascular risk factors and white matter hyperintensities predict the progression and severity of cognitive symptoms in PD. While controversial, emerging evidence suggests that cerebrovascular dysfunction is an etiological driver of protein aggregation in neurodegenerative conditions, highlighting a need to understand how cerebrovascular function impacts cognitive function in PD. MRI cerebrovascular reactivity (CVR) paradigms provide an opportunity to measure the ability of the cerebral vessels to dilate or constrict in response to challenges. The current study evaluates whether whole brain CVR measures, degree of response (fit) and delay differ in PD with normal cognition (PD-NC) and PD with mild cognitive impairment (PD-MCI) relative to healthy controls (HC). Additionally, we evaluate if these metrics are associated with cognitive performance.
Participants and Methods:
8 PD-NC, 11 PD-MCI and 11 age and sex-matched healthy controls (HC) participated in the study. PD participants were diagnosed with MCI based on the Movement Disorders Society Task force, Level II assessment (comprehensive assessment). Participants were asked to inhale gas enriched in CO2 to elicit a vasodilatory response while undergoing bold oxygen level-dependent magnetic resonance image (MRI). Whole brain fit to an end-tidal CO2 regressor and delay were used to quantify CVR in each participant. An analysis of covariance (ANCOVA) was used to evaluate group differences between HC, PD-NC, and PD-MCI in the whole brain fit and delay CVR measures accounting for age, sex, and education. Multiple regressions were conducted for each cognitive variable with whole brain fit and delay as the dependent variables adjusting for age, sex, and education.
Results:
A significant main effect of group was observed for whole brain CVR latency (F(2, 23) = 4.227; p = 0.027). Post hoc tests were not significant, though indicated a trend that PD-NC (18.14 ±1.94) and PD-MCI (18.15 ± 1.55) patients exhibited longer delays relative to HC (15.84 ± 2.37). Regression results indicated limited relationships between CVR measures and cognitive functioning.
Conclusions:
PD patients (PD-NC and PD-MCI) exhibited longer CVR delays relative to HC, suggesting a delayed vasodilatory response in PD. Examination of the association between CVR metrics and cognition were not significant, though these results should be interpreted with caution given the small sample size.
Reactive oxygen species (ROS) play an essential role in regulating various functions of organisms such as gene transcription, signalling transduction and immune response. However, overproduction of ROS can lead to oxidative stress, which is related to various ageing diseases including eye and brain degenerative diseases. Ocular measurements have recently been suggested as potential sources of biomarkers for the early detection of brain neurodegenerative diseases. MicroRNAs (miRNAs) are useful biomarkers for various diseases including degenerative diseases. miRNAs play an important role in the oxidative stress mechanisms of ageing diseases. In this paper, the role of miRNAs related to oxidative stress mechanisms in four ageing diseases, Parkinson's disease (PD), Alzheimer's disease (AD), glaucoma and age-related macular degeneration was reviewed. The common miRNA biomarkers related to the four diseases were also discussed. The results show that these eye and brain ageing diseases share many common miRNA biomarkers. It indicates that the ocular condition may be a prognostic biomarker for PD or AD patients. When a patient's eye condition changes, this can be a warning of a change in PD or AD status.
People with neurodegenerative disease and mild cognitive impairment (MCI) may have an elevated risk of acquiring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may be disproportionally affected by coronavirus disease 2019 (COVID-19) once infected.
Aims
To review all eligible studies and quantify the strength of associations between various pre-existing neurodegenerative disorders and both SARS-CoV-2 susceptibility and COVID-19 illness course and outcome.
Method
Pre-registered systematic review with frequentist and Bayesian meta-analyses. Systematic searches were executed in PubMed, Web of Science and preprint servers. The final search date was 9 January 2023. Odds ratios (ORs) were used as measures of effect.
Results
In total, 136 primary studies (total sample size n = 97 643 494), reporting on 268 effect-size estimates, met the inclusion criteria. The odds for a positive SARS-CoV-2 test result were increased for people with pre-existing dementia (OR = 1.83, 95% CI 1.16–2.87), Alzheimer's disease (OR = 2.86, 95% CI 1.44–5.66) and Parkinson's disease (OR = 1.65, 95% CI 1.34–2.04). People with pre-existing dementia were more likely to experience a relatively severe COVID-19 course, once infected (OR = 1.43, 95% CI 1.00–2.03). People with pre-existing dementia or Alzheimer's disease were at increased risk for COVID-19-related hospital admission (pooled OR range: 1.60–3.72). Intensive care unit admission rates were relatively low for people with dementia (OR = 0.54, 95% CI 0.40–0.74). All neurodegenerative disorders, including MCI, were at higher risk for COVID-19-related mortality (pooled OR range: 1.56–2.27).
Conclusions
Our findings confirm that, in general, people with neurodegenerative disease and MCI are at a disproportionally high risk of contracting COVID-19 and have a poor outcome once infected.
The term ‘autophagy’ literally translates to ‘self-eating’ and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.
Social functioning is crucial for daily living and is an essential indicator of dementia in patients with Parkinson's disease. The pattern of social functioning in patients with Parkinson's disease without dementia (i.e. those who are cognitively intact or have mild cognitive impairment (PD-MCI)) and its determinants are unclear.
Aims
In exploring the heterogeneity of social functioning among patients with Parkinson's disease-associated dementia, we determined the optimal cut-off score of the Parkinson's Disease Social Functioning Scale (PDSFS) for patients with PD-MCI, and the variables influencing patients’ social functioning.
Method
A total of 302 participants underwent the Mini-Mental State Examination (MMSE) and PDSFS; 120 patients with Parkinson's disease completed the measurements (MMSE, Activities of Daily Living Scale and Neuropsychiatric Inventory). Group comparisons, receiver operating characteristic curves, Spearman correlation and multiple and hierarchical regression analyses were conducted.
Results
The PD-MCI group scored the lowest on the PDSFS (F = 10.10, P < 0.001). The PDSFS cut-off score was 53 (area under the curve 0.700, sensitivity 0.800, specificity 0.534). The MMSE (β = 0.293, P = 0.002), Activities of Daily Living Scale (β = 0.189, P = 0.028) and Neuropsychiatric Inventory (β = −0.216, P = 0.005) scores predicted the PDSFS score. Further, there was an interaction effect between the Activities of Daily Living Scale and Neuropsychiatric Inventory scores on the PDSFS score (β = 0.305, P < 0.001).
Conclusions
We determined a PDSFS cut-off score for detecting PD-MCI and found that patients with PD-MCI have social dysfunction. Future research should focus on the effects of neuropsychiatry symptoms and activities of daily living on social functioning, and tailor the intervention programme for patients with Parkinson's disease.
This study aimed to assess the effects of surface electrical stimulation plus voice therapy on voice in dysphonic patients with idiopathic Parkinson's disease.
Method
Patients were assigned to 3 treatment groups (n = 28 per group) and received daily treatment for 3 weeks on 5 days a week. All three groups received voice therapy (usual care). In addition, two groups received surface electrical stimulation, either motor-level or sensory-level stimulation. A standardised measurement protocol to evaluate therapeutic effects included the Voice Handicap Index and videolaryngostroboscopy.
Results
Voice Handicap Index and videolaryngostroboscopic assessment showed statistically significant differences between baseline and post-treatment across all groups, without any post-treatment differences between the three groups.
Conclusion
Intensive voice therapy (usual care) improved idiopathic Parkinson's disease patients' self-assessment of voice impairment and the videolaryngostroboscopic outcome score. However, surface electrical stimulation used as an add-on to usual care did not improve idiopathic Parkinson's disease patients’ self-assessment of voice impairment or the videolaryngostroboscopic outcome scores any further.
Clozapine is the only antipsychotic licensed for treatment of Parkinson's disease psychosis (PDP) but is infrequently used in the National Health Service because of obstacles to the integration of hospital-based neurological/geriatric services with clozapine clinics run by community mental health teams. This commentary points out the mismatch between NICE quality standards on antipsychotic treatment for PDP and current clinical practice. It suggests that forthcoming integrated care systems should be able to overcome these obstacles, enabling innovative models for providing clozapine treatment for PDP such as those described by Taylor et al, so that clozapine treatment becomes a right for patients and their families.
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease and affects about 1% of the population over the age of 60 years in industrialised countries. The aim of this review is to examine nutrition in PD across three domains: dietary intake and the development of PD; whole body metabolism in PD and the effects of PD symptoms and treatment on nutritional status. In most cases, PD is believed to be caused by a combination of genetic and environmental factors and although there has been much research in the area, evidence suggests that poor dietary intake is not a risk factor for the development of PD. The evidence about body weight changes in both the prodromal and symptomatic phases of PD is inconclusive and is confounded by many factors. Malnutrition in PD has been documented as has sarcopaenia, although the prevalence of the latter remains uncertain due to a lack of consensus in the definition of sarcopaenia. PD symptoms, including those which are gastrointestinal and non-gastrointestinal, are known to adversely affect nutritional status. Similarly, PD treatments can cause nausea, vomiting and constipation, all of which can adversely affect nutritional status. Given that the prevalence of PD will increase as the population ages, it is important to understand the interplay between PD, comorbidities and nutritional status. Further research may contribute to the development of interventional strategies to improve symptoms, augment care and importantly, enhance the quality of life for patients living with this complex neurodegenerative disease.
Impaired self-awareness of cognitive deficits (ISAcog) has rarely been investigated in Parkinson's disease (PD). ISAcog is associated with poorer long-term outcome in other diseases. This study examines ISAcog in PD with and without mild cognitive impairment (PD-MCI), compared to healthy controls, and its clinical-behavioral and neuroimaging correlates.
Methods
We examined 63 PD patients and 30 age- and education-matched healthy controls. Cognitive state was examined following the Movement Disorder Society Level II criteria. ISAcog was determined by subtracting z-scores (based on controls' scores) of objective tests and subjective questionnaires. Neural correlates were assessed by structural magnetic resonance imaging (MRI) and 2-[fluorine-18]fluoro-2-deoxy-d-glucose-positron emission tomography (FDG-PET) in 47 patients (43 with MRI) and 11 controls. We analyzed whole-brain glucose metabolism and cortical thickness in regions where FDG-uptake correlated with ISAcog.
Results
PD-MCI patients (N = 23) showed significantly more ISAcog than controls and patients without MCI (N = 40). When all patients who underwent FDG-PET were examined, metabolism in the bilateral superior medial frontal gyrus, anterior and midcingulate cortex negatively correlated with ISAcog (FWE-corrected p < 0.001). In PD-MCI, ISAcog was related to decreased metabolism in the right superior temporal lobe and insula (N = 13; FWE-corrected p = 0.023) as well as the midcingulate cortex (FWE-corrected p = 0.002). Cortical thickness was not associated with ISAcog in these regions. No significant correlations were found between ISAcog and glucose metabolism in controls and patients without MCI.
Conclusions
Similar to Alzheimer's disease, the cingulate cortex seems to be relevant in ISAcog in PD. In PD-MCI patients, ISAcog might result from a disrupted network that regulates awareness of cognition and error processes.
This chapter interrogates arguments for doing invasive research on animals in laboratories. A non-speciesist utilitarian test for determining when experimentation may be justified is introduced and discussed as is the abolition of animal experimentation.
Parkinson's psychosis can be very challenging to manage, with limited treatment options available. There is a good evidence base to support the use of clozapine, but practical obstacles often prevent its use. There is a drive nationally to set up services so that people with Parkinson's psychosis can access treatment with clozapine in a timely manner and, where possible, with initiation in the community. The authors describe their experiences in setting up clozapine services specifically for this patient group in England and offer a practical approach to the assessment of Parkinson's psychosis. They also outline the evidence base in relation to treatment options and share their experiences of prescribing clozapine for Parkinson's psychosis.
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
The exact role of the basal ganglia in both the motor and non-motor domains has proven elusive since it is virtually impossible to refer to its function in isolation of cortical, and especially frontal cortical circuits. The result is that we often speak of frontal-striatal circuits and functions but this still leaves us in the dark when trying to specify basal ganglia information processing. A critical review of the data from both basic science and clinical studies suggests that we should break down processing along a temporal continuum, including the domains of context, sequential information processing, and feedback or reinforcement (i.e., the consequences of action). This analysis would cut across other theoretical constructs, such as attention, central executive, memory, and learning functions, traditionally employed in the neuropsychological literature. Under specified behavioral constraint, the basal ganglia can then be seen to be involved in fundamental aspects of attentional control (often covert), in the guidance of the early stages of learning (especially reinforcement-based, but also encoding strategies in explicit paradigms), and in the associative binding of reward to cue salience and response sequences via dopaminergic mechanisms. Parkinson’s disease is considered to offer only a limited view of basal ganglia function due to partial striatal depletion of dopamine and the potential involvement of other structures and transmitters in its pathology. It is hoped that the present formulation will suggest new heuristic research strategies for basal ganglia research, permitting a closer link to be established between neurophysiological, functional imaging and neuropsychological paradigms. (JINS, 2003, 9, 103–127.)
This study investigates the relationship between mechanisms involved in language control within dual- and single-language contexts by examining whether they are similarly impaired in bilingual PD patients. To do so, we explored the performance of bilingual individuals affected by PD and healthy controls on two linguistic tasks: between-language and within-language switching tasks. We focused on switch and mixing costs as measures of linguistic control.
The results indicate that, whereas larger switch costs were observed in PD patients, compared to controls, solely during the between-language task, larger mixing costs appeared during both the between-language task and the within-language task. These results are discussed within the framework of the dual mechanism hypothesis, which suggests that switch and mixing costs are measures of two types of control: specifically reactive and proactive control. Therefore, we conclude that reactive control for switching between languages is domain-specific while proactive control mechanisms are more domain-general.
Naast de gangbare indicaties voor ECT op het gebied van de affectieve stoornissen, zijn ook positieve effecten van deze behandeling beschreven bij enkele neurologische ziektebeelden. De auteurs geven een overzicht van gepubliceerde onderzoeksresultaten en ziektegeschiedenissen met betrekking tot de effectiviteit van ECT bij de behandeling van motorische symptomen van Parkinson-patiënten met of zonder coëxistente depressieve stoornis. Het enige prospectieve gecontroleerde onderzoek maakt melding van een positief resultaat op de motorische symptomen dat tot zes weken na behandeling aanhoudt. Dit komt overeen met de resultaten van vrijwel alle open onderzoeken en gepubliceerde casus, waarbij verbeteringen beschreven worden, variërend van enkele weken tot vier juar. Twee open onderzoeken (één retrospectief en één prospectief) vinden geen effect op de motoriek.
De aangehaalde literatuur rechtvaardigt volgens de auteurs het opzetten van groter prospectief onderzoek naar de waarde van deze behandeling voor Parkinson-patiënten, en wel met name bij die groep patiënten waarbij de medicamenteuze behandelmogelijkheden uitgeput zijn.
Non-motor features of Parkinson's disease (PD) and dementia with Lewy bodies (DLB), such as auditory hallucinations (AH), contribute to disease burden but are not well understood.
Methods
Systematic review and random-effects meta-analyses of studies reporting AH associated with PD or DLB. Prevalence of visual hallucinations (VH) in identified studies meeting eligibility criteria were included in meta-analyses, facilitating comparison with AH. Synthesis of qualitative descriptions of AH was performed. PubMed, Web of Science and Scopus databases were searched for primary journal articles, written in English, published from 1970 to 2017. Studies reporting AH prevalence in PD or DLB were screened using PRISMA methods.
Results
Searches identified 4542 unique studies for consideration, of which, 26 met inclusion criteria. AH pooled prevalence in PD was estimated to be 8.9% [95% confidence interval (CI) 5.3–14.5], while in DLB was estimated to be 30.8% (±23.4 to 39.3). Verbal hallucinations, perceived as originating outside the head, were the most common form of AH. Non-verbal AH were also common while musical AH were rare. VH were more prevalent, with an estimated pooled prevalence in PD of 28.2% (±19.1 to 39.5), while in DLB they were estimated to be 61.8% (±49.1 to 73.0). Meta-regression determined that the use of validated methodologies to identify hallucinations produced higher prevalence estimates.
Conclusions
AH and VH present in a substantial proportion of PD and DLB cases, with VH reported more frequently in both conditions. Both AH and VH are more prevalent in DLB than PD. There is a need for standardised use of validated methods to detect and monitor hallucinations.