We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the Gross–Prasad conjecture and its refinement for the Bessel periods in the case of $(\mathrm {SO}(5), \mathrm {SO}(2))$. In particular, by combining several theta correspondences, we prove the Ichino–Ikeda-type formula for any tempered irreducible cuspidal automorphic representation. As a corollary of our formula, we prove an explicit formula relating certain weighted averages of Fourier coefficients of holomorphic Siegel cusp forms of degree two, which are Hecke eigenforms, to central special values of $L$-functions. The formula is regarded as a natural generalization of the Böcherer conjecture to the non-trivial toroidal character case.
Let f be an $L^2$-normalized holomorphic newform of weight k on $\Gamma _0(N) \backslash \mathbb {H}$ with N squarefree or, more generally, on any hyperbolic surface $\Gamma \backslash \mathbb {H}$ attached to an Eichler order of squarefree level in an indefinite quaternion algebra over $\mathbb {Q}$. Denote by V the hyperbolic volume of said surface. We prove the sup-norm estimate
$$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$
with absolute implied constant. For a cuspidal Maaß newform $\varphi $ of eigenvalue $\lambda $ on such a surface, we prove that
In this paper, we investigate the twisted GGP conjecture for certain tempered representations using the theta correspondence and establish some special cases, namely when the L-parameter of the unitary group is the sum of conjugate-dual characters of the appropriate sign.
A crucial ingredient in the theory of theta liftings of Kudla and Millson is the construction of a $q$-form $\varphi_{KM}$ on an orthogonal symmetric space, using Howe's differential operators. This form can be seen as a Thom form of a real oriented vector bundle. We show that the Kudla-Millson form can be recovered from a canonical construction of Mathai and Quillen. A similar result was obtaind by Garcia for signature $(2,q)$ in case the symmetric space is hermitian and we extend it to arbitrary signature.
We prove that the Jacquet–Langlands correspondence for cohomological automorphic forms on quaternionic Shimura varieties is realized by a Hodge class. Conditional on Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups, we also show that the image of this Hodge class in $\ell $-adic cohomology is Galois invariant for all $\ell $.
We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands L-functions for ${\mathrm {GL}}(2)$. We show that the resulting comparison is in fact an expression of an exotic symmetric monoidal structure on the category of ${\mathrm {GL}}(2)$-modules. Moreover, this enables us to construct an abelian category of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We speculate that this category is a natural setting for the study of automorphic phenomena for ${\mathrm {GL}}(2)$, and demonstrate its basic properties.
In this paper, we compute the Fourier expansion of the Shintani lift of nearly holomorphic modular forms. As an application, we deduce modularity properties of generating series of cycle integrals of nearly holomorphic modular forms.
We use the method of Bruinier–Raum to show that symmetric formal Fourier–Jacobi series, in the cases of norm-Euclidean imaginary quadratic fields, are Hermitian modular forms. Consequently, combining a theorem of Yifeng Liu, we deduce Kudla’s conjecture on the modularity of generating series of special cycles of arbitrary codimension for unitary Shimura varieties defined in these cases.
In this note, we use Dedekind’s eta function to prove a congruence relation between the number of representations by binary quadratic forms of discriminant
$-31$
and Fourier coefficients of a weight
$16$
cusp form. Our result is analogous to the classical result concerning Ramanujan’s tau function and binary quadratic forms of discriminant
$-23$
.
for triple product L-functions, where
$\Psi $
is a fixed Hecke–Maass form on
$\operatorname {\mathrm {SL}}_2(\mathbb {Z})$
and
$\varphi $
runs over the Hecke–Maass newforms on
$\Gamma _0(p)$
of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent
$5/4$
is the strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if one assumes the Ramanujan conjecture in both the integral and half-integral weight cases.
Under the triple product formula, our result may be understood as a strong level aspect form of quantum ergodicity: for a large prime p, all but very few Hecke–Maass newforms on
$\Gamma _0(p) \backslash \mathbb {H}$
of bounded eigenvalue have very uniformly distributed mass after pushforward to
$\operatorname {\mathrm {SL}}_2(\mathbb {Z}) \backslash \mathbb {H}$
.
Our main result turns out to be closely related to estimates such as
where the sum is over those n for which
$n p$
is a fundamental discriminant and
$\chi _{n p}$
denotes the corresponding quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.
We consider autocorrelation functions for supersymmetric quantum mechanical systems (consisting of a fermion and a boson) confined in trigonometric Pöschl–Teller partner potentials. We study the limit of rescaled autocorrelation functions (at random time) as the localization of the initial state goes to infinity. The limiting distribution can be described using pairs of Jacobi theta functions on a suitably defined homogeneous space, as a corollary of the work of Cellarosi and Marklof. A construction by Contreras-Astorga and Fernández provides large classes of Pöschl-Teller partner potentials to which our analysis applies.
In this paper, we decompose
$\overline {D}(a,M)$
into modular and mock modular parts, so that it gives as a straightforward consequencethe celebrated results of Bringmann and Lovejoy on Maass forms. Let
$\overline {p}(n)$
be the number of partitions of n and
$\overline {N}(a,M,n)$
be the number of overpartitions of n with rank congruent to a modulo M. Motivated by Hickerson and Mortenson, we find and prove a general formula for Dyson’s ranks by considering the deviation of the ranks from the average:
In an earlier paper of Wee Teck Gan and Gordan Savin, the local Langlands correspondence for metaplectic groups over a nonarchimedean local field of characteristic zero was established. In this paper, we formulate and prove a local intertwining relation for metaplectic groups assuming the local intertwining relation for non-quasi-split odd special orthogonal groups.
We prove a functional equation for a vector valued real analytic Eisenstein series transforming with the Weil representation of $\operatorname{Sp}(n,\mathbb{Z})$ on $\mathbb{C}[(L^{\prime }/L)^{n}]$. By relating such an Eisenstein series with a real analytic Jacobi Eisenstein series of degree $n$, a functional equation for such an Eisenstein series is proved. Employing a doubling method for Jacobi forms of higher degree established by Arakawa, we transfer the aforementioned functional equation to a zeta function defined by the eigenvalues of a Jacobi eigenform. Finally, we obtain the analytic continuation and a functional equation of the standard $L$-function attached to a Jacobi eigenform, which was already proved by Murase, however in a different way.
We show a Siegel–Weil formula in the setting of exceptional theta correspondence. Using this, together with a new Rankin–Selberg integral for the Spin L-function of $\text{PGSp}_{6}$ discovered by Pollack, we prove that a cuspidal representation of $\text{PGSp}_{6}$ is a (weak) functorial lift from the exceptional group $G_{2}$ if its (partial) Spin L-function has a pole at $s=1$.
Waldspurger’s formula gives an identity between the norm of a torus period and an $L$-function of the twist of an automorphic representation on GL(2). For any two Hecke characters of a fixed quadratic extension, one can consider the two torus periods coming from integrating one character against the automorphic induction of the other. Because the corresponding $L$-functions agree, (the norms of) these periods—which occur on different quaternion algebras—are closely related. In this paper, we give a direct proof of an explicit identity between the torus periods themselves.
Following recent investigations of vanishing coefficients in infinite products, we show that such instances are very rare when the infinite product is among a family of theta-quotients of modulus five. We also prove that a general family of products of theta functions of modulus five can always be effectively 5-dissected.
In this paper we construct indefinite theta series for lattices of arbitrary signature $(p,q)$ as ‘incomplete’ theta integrals, that is, by integrating the theta forms constructed by the second author with J. Millson over certain singular $q$-chains in the associated symmetric space $D$. These chains typically do not descend to homology classes in arithmetic quotients of $D$, and consequently the theta integrals do not give rise to holomorphic modular forms, but rather to the non-holomorphic completions of certain mock modular forms. In this way we provide a general geometric framework for the indefinite theta series constructed by Zwegers and more recently by Alexandrov, Banerjee, Manschot, and Pioline, Nazaroglu, and Raum. In particular, the coefficients of the mock modular forms are identified with intersection numbers.
We characterize the cuspidal representations of $G_{2}$ whose standard ${\mathcal{L}}$-function admits a pole at $s=2$ as the image of the Rallis–Schiffmann lift for the commuting pair ($\widetilde{\text{SL}}_{2}$, $G_{2}$) in $\widetilde{\text{Sp}}_{14}$. The image consists of non-tempered representations. The main tool is the recent construction, by the second author, of a family of Rankin–Selberg integrals representing the standard ${\mathcal{L}}$-function.