We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal {M}$ be an Ahlfors $n$-regular Riemannian manifold such that either the Ricci curvature is non-negative or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2, 1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function $u : \mathcal {M} \to \mathbb {R}$ by a Carleson measure condition of its $\sigma$-harmonic extension $U:\mathcal {M}\times \mathbb {R}_+ \to \mathbb {R}$. This paper is concerned with the similar problem under a more general Dirichlet metric measure space setting, and the limiting behaviours of BMO & Carleson measure, where the heat kernel admits only the so-called diagonal upper estimate. More significantly, without the Ricci curvature condition, we relax the Ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel. Some similar results for the Lipschitz function are also given, and two open problems related to our main result are considered.
We prove that the uncentered Hardy–Littlewood maximal operator is discontinuous on ${BMO}(\mathbb {R}^n)$ and maps ${VMO}(\mathbb {R}^n)$ to itself. A counterexample to the boundedness of the strong and directional maximal operators on ${BMO}(\mathbb {R}^n)$ is given, and properties of slices of ${BMO}(\mathbb {R}^n)$ functions are discussed.
We study the connection between the Muckenhoupt Ap weights and bounded mean oscillation (BMO) for general bases for ℝd. New classes of bases are introduced that allow for several deep results on the Muckenhoupt weights–BMO connection to hold in a very general form. The John–Nirenberg type inequality and its consequences are valid for the new class of Calderón–Zygmund bases which includes cubes in ℝd, but also the basis of rectangles in ℝd. Of particular interest to us is the Garnett–Jones theorem on the BMO distance, which is valid for cubes. We prove that the theorem is equivalent to the newly introduced A2-decomposition property of bases. Several sufficient conditions for the theorem to hold are analysed as well. However, the question whether the theorem fully holds for rectangles remains open.
In this paper we define a space$VM{{O}_{P}}$ associated with a family $P$ of parabolic sections and show that the dual of $VM{{O}_{P}}$ is the Hardy space $H_{P}^{1}$. As an application, we prove that almost everywhere convergence of a bounded sequence in $H_{P}^{1}$ implies weak$^{\star }$ convergence
We prove continuity in generalized parabolic Morrey spaces of sublinear operators generated by the parabolic Calderón—Zygmund operator and by the commutator of this operator with bounded mean oscillation (BMO) functions. As a consequence, we obtain a global -regularity result for the Cauchy—Dirichlet problem for linear uniformly parabolic equations with vanishing mean oscillation (VMO) coefficients.
Every bounded linear operator that maps ${H}^{1} $ to ${L}^{1} $ and ${L}^{2} $ to ${L}^{2} $ is bounded from ${L}^{p} $ to ${L}^{p} $ for each $p\in (1, 2)$, by a famous interpolation result of Fefferman and Stein. We prove ${L}^{p} $-norm bounds that grow like $O(1/ (p- 1))$ as $p\downarrow 1$. This growth rate is optimal, and improves significantly on the previously known exponential bound $O({2}^{1/ (p- 1)} )$. For $p\in (2, \infty )$, we prove explicit ${L}^{p} $ estimates on each bounded linear operator mapping ${L}^{\infty } $ to bounded mean oscillation ($\mathit{BMO}$) and ${L}^{2} $ to ${L}^{2} $. This $\mathit{BMO}$ interpolation result implies the ${H}^{1} $ result above, by duality. In addition, we obtain stronger results by working with dyadic ${H}^{1} $ and dyadic $\mathit{BMO}$. The proofs proceed by complex interpolation, after we develop an optimal dyadic ‘good lambda’ inequality for the dyadic $\sharp $-maximal operator.
Let f:ℝ→ℝ be a locally integrable function of bounded lower oscillation. The paper contains the proofs of sharp strong-type, weak-type and exponential estimates for the mean oscillation of f. In particular, this yields the precise value of the norm of the embedding BLO⊂BMOp, 1≤p<∞. Higher-dimensional analogues for anisotropic BLO spaces are also established.
In this paper, we discuss the H1L-boundedness of commutators of Riesz transforms associated with the Schrödinger operator L=−△+V, where H1L(Rn) is the Hardy space associated with L. We assume that V (x) is a nonzero, nonnegative potential which belongs to Bq for some q>n/2. Let T1=V (x)(−△+V )−1, T2=V1/2(−△+V )−1/2 and T3 =∇(−△+V )−1/2. We prove that, for b∈BMO (Rn) , the commutator [b,T3 ] is not bounded from H1L(Rn) to L1 (Rn) as T3 itself. As an alternative, we obtain that [b,Ti ] , ( i=1,2,3 ) are of (H1L,L1weak) -boundedness.
This paper studies the relationship between vector-valued $\text{BMO}$ functions and the Carleson measures defined by their gradients. Let $dA$ and $dm$ denote Lebesgue measures on the unit disc $D$ and the unit circle $\mathbb{T}$, respectively. For $1\,<\,q\,<\,\infty $ and a Banach space $B$, we prove that there exists a positive constant $c$ such that
$$\underset{{{z}_{0}}\in D}{\mathop{\sup }}\,{{\int }_{D}}{{\left( 1-\left| z \right| \right)}^{q-1}}{{\left\| \nabla f\left( z \right) \right\|}^{q}}{{P}_{{{Z}_{0}}}}\left( z \right)dA\left( z \right)\le {{c}^{q}}\underset{{{z}_{0}}\in D}{\mathop{\sup }}\,{{\int }_{\mathbb{T}}}{{\left\| f\left( z \right)-f\left( {{z}_{0}} \right) \right\|}^{q}}{{P}_{{{z}_{0}}}}\left( z \right)dm\left( z \right)$$
holds for all trigonometric polynomials $f$ with coefficients in $B$ if and only if $B$ admits an equivalent norm which is $q$-uniformly convex, where
$${{P}_{{{z}_{0}}}}\left( z \right)=\frac{1-|{{z}_{0}}{{|}^{2}}}{|1-{{{\bar{z}}}_{0}}z{{|}^{2}}}.$$
The validity of the converse inequality is equivalent to the existence of an equivalent $q$-uniformly smooth norm.
Let Β1, Β2 be a pair of Banach spaces and T be a vector valued martingale transform (with respect to general filtration) which maps Β1-valued martingales into Β2-valued martingales. Then, the following statements are equivalent: T is bounded from into for some p (or equivalently for every p) in the range 1 < p < ∞; T is bounded from into BMOB2; T is bounded from BMOB1 into BMOB2; T is bounded from into . Applications to UMD and martingale cotype properties are given. We also prove that the Hardy space defined in the case of a general filtration has nice dense sets and nice atomic decompositions if and only if Β has the Radon-Nikodým property.
In this paper we study the boundedness of the commutators $[b,\,{{S}_{n}}]$ where $b$ is a $\text{BMO}$ function and ${{S}_{n}}$ denotes the $n$-th partial sum of the Fourier-Bessel series on $(0,\,\infty )$. Perturbing the measure by $\text{exp(}2\text{b)}$ we obtain that certain operators related to ${{S}_{n}}$ depend analytically on the functional parameter $b$.
Let $\cal D $ denote the collection of dyadic
intervals in the unit interval. Let $\tau$ be a rearrangement of the dyadic intervals. We study the
induced operator
$$ Th_I = h_{\tau(I)}$$
where $h_I$ is the $L^{\infty}$ normalized
Haar function. We find geometric conditions on $\tau$ which are necessary and sufficient for $T$ to be
bounded on $BMO$. We also characterize the rearrangements of the $L^p$ normalized Haar system in
$L^p.$
The BMO norm of f is equivalent to where Pt is the Poisson kernel. In this note, we show that Pt can be replaced by a nonnegative radial function h, which is positive in a neighbourhood of 0, with and , where h is the least decreasing radial majorant of h.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.