We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The goal of this book is to exhibit the profound and myriad interrelations between the mathematics of modular forms and the physics of string theory. Our presentation is intended to be informal but mathematically precise, logically complete, and reasonably self-contained. The exposition is kept as simple as possible so as to be accessible to adventurous undergraduates, motivated graduate students, and dedicated professionals interested in the interface between theoretical physics and pure mathematics. Assuming little more than a knowledge of complex function theory, we introduce elliptic functions and elliptic curves as a lead-in to modular forms and their various deep generalizations. Following an economical introduction to string theory, its perturbative expansion, toroidal compactification, and supergravity limit are used to illustrate the power of modular invariance in physics. Dualities and their realization via modular forms in Yang–Mills theories with extended supersymmetry are studied both via the Seiberg–Witten solution and via their superconformal phase. Appendices are included to review foundational topics, and 75 exercises with detailed solutions give the reader ample opportunity for practice.
An indispensable resource for readers in physics and mathematics seeking a solid grasp of the mathematical tools shaping modern theoretical physics, this book comprises a practical introduction to the mathematical theory of modular forms and their application to the physics of string theory and supersymmetric Yang-Mills theory. Suitable for adventurous undergraduates, motivated graduate students, and researchers wishing to navigate the intersection of cutting-edge research in physics and mathematics, it guides readers from the theory of elliptic functions to the fascinating mathematical world of modular forms, congruence subgroups, Hecke theory, and more. Having established a solid basis, the book proceeds to numerous applications in physics, with only minimal prior knowledge assumed. Appendices review foundational topics, making the text accessible to a broad audience, along with exercises and detailed solutions that provide opportunities for practice. After working through the book, readers will be equipped to carry out research in the field.
In this paper, we prove Kato’s main conjecture for $CM$ modular forms for primes of potentially ordinary reduction under certain hypotheses on the modular form.
We axiomatise the algebraic properties of toroidal compactifications of (mixed) Shimura varieties and their automorphic vector bundles. A notion of generalised automorphic sheaf is proposed which includes sheaves of (meromorphic) sections of automorphic vector bundles with prescribed vanishing and pole orders along strata in the compactification, and their quotients. These include, for instance, sheaves of Jacobi forms and weakly holomorphic modular forms. Using this machinery, we give a short and purely algebraic proof of the proportionality theorem of Hirzebruch and Mumford.
In 2019, Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb.23(2) (2019), 249–254] introduced the arithmetic function $\sigma \textrm {mex}(n)$, which denotes the sum of minimal excludants over all the partitions of n. Baruah et al. [‘A refinement of a result of Andrews and Newman on the sum of minimal excludants’, Ramanujan J., to appear] showed that the sum of minimal excludants over all the partitions of n is the same as the number of partition pairs of n into distinct parts. They proved three congruences modulo $4$ and $8$ for two functions appearing in this refinement and conjectured two further congruences modulo $8$ and $16$. We confirm these two conjectures by using q-series manipulations and modular forms.
Let $Q(n)$ denote the number of partitions of n into distinct parts. Merca [‘Ramanujan-type congruences modulo 4 for partitions into distinct parts’, An. Şt. Univ. Ovidius Constanţa30(3) (2022), 185–199] derived some congruences modulo $4$ and $8$ for $Q(n)$ and posed a conjecture on congruences modulo powers of $2$ enjoyed by $Q(n)$. We present an approach which can be used to prove a family of internal congruence relations modulo powers of $2$ concerning $Q(n)$. As an immediate consequence, we not only prove Merca’s conjecture, but also derive many internal congruences modulo powers of $2$ satisfied by $Q(n)$. Moreover, we establish an infinite family of congruence relations modulo $4$ for $Q(n)$.
Lin introduced the partition function $\text {PDO}_t(n)$, which counts the total number of tagged parts over all the partitions of n with designated summands in which all parts are odd. Lin also proved some congruences modulo 3 and 9 for $\text {PDO}_t(n)$, and conjectured certain congruences modulo $3^{k+2}$ for $k\geq 0$. He proved the conjecture for $k=0$ and $k=1$ [‘The number of tagged parts over the partitions with designated summands’, J. Number Theory184 (2018), 216–234]. We prove the conjecture for $k=2$. We also study the lacunarity of $\text {PDO}_t(n)$ modulo arbitrary powers of 2 and 3. Using nilpotency of Hecke operators, we prove that there exists an infinite family of congruences modulo any power of 2 satisfied by $\text {PDO}_t(n)$.
A partition of a positive integer n is called $\ell $-regular if none of its parts is divisible by $\ell $. Denote by $b_{\ell }(n)$ the number of $\ell $-regular partitions of n. We give a complete characterisation of the arithmetic of $b_{23}(n)$ modulo $11$ for all n not divisible by $11$ in terms of binary quadratic forms. Our result is obtained by establishing a relation between the generating function for these values of $b_{23}(n)$ and certain modular forms having complex multiplication by ${\mathbb Q}(\sqrt {-69})$.
We prove new cases of the Inverse Galois Problem by considering the residual Galois representations arising from a fixed newform. Specific choices of weight
$3$
newforms will show that there are Galois extensions of
${\mathbb Q}$
with Galois group
$\operatorname {PSL}_2({\mathbb F}_p)$
for all primes p and
$\operatorname {PSL}_2({\mathbb F}_{p^3})$
for all odd primes
$p \equiv \pm 2, \pm 3, \pm 4, \pm 6 \ \pmod {13}$
.
A (folklore?) conjecture states that no holomorphic modular form
$F(\tau )=\sum _{n=1}^{\infty } a_nq^n\in q\mathbb Z[[q]]$
exists, where
$q=e^{2\pi i\tau }$
, such that its anti-derivative
$\sum _{n=1}^{\infty } a_nq^n/n$
has integral coefficients in the q-expansion. A recent observation of Broadhurst and Zudilin, rigorously accomplished by Li and Neururer, led to examples of meromorphic modular forms possessing the integrality property. In this note, we investigate the arithmetic phenomenon from a systematic perspective and discuss related transcendental extensions of the differentially closed ring of quasi-modular forms.
Let
$p_{\{3, 3\}}(n)$
denote the number of
$3$
-regular partitions in three colours. Da Silva and Sellers [‘Arithmetic properties of 3-regular partitions in three colours’, Bull. Aust. Math. Soc.104(3) (2021), 415–423] conjectured four Ramanujan-like congruences modulo
$5$
satisfied by
$p_{\{3, 3\}}(n)$
. We confirm these conjectural congruences using the theory of modular forms.
We study families of metrics on automorphic vector bundles associated with representations of the modular group. These metrics are defined using an Eisenstein series construction. We show that in certain cases, the residue of these Eisenstein metrics at their rightmost pole is a harmonic metric for the underlying representation of the modular group. The last section of the paper considers the case of a family of representations that are indecomposable but not irreducible. The analysis of the corresponding Eisenstein metrics, and the location of their rightmost pole, is an open question whose resolution depends on the asymptotics of matrix-valued Kloosterman sums.
We answer some questions in a paper by Kaneko and Koike [‘On modular forms arising from a differential equation of hypergeometric type’, Ramanujan J.7(1–3) (2003), 145–164] about the modularity of the solutions of a certain differential equation. In particular, we provide a number-theoretic explanation of why the modularity of the solutions occurs in some cases and does not occur in others. This also proves their conjecture on the completeness of the list of modular solutions after adding some missing cases.
Further results are flowing like a stream. By early 2018 the principal works which have formed the core of this book had collectively received over 210 citations registered on MathSciNet. In this chapter we summarize some of these results, depending also on the list of Andrew Granville. The material covered is but an indication of the fundamental nature of the breakthroughs which have been described, and much more is expected in the future. This chapter gives a description of the results but without proofs. The topics include bounded gaps for primes described by affine forms, clusters of primes in intervals, gaps between almost primes, clusters of primes in intervals, the set of limit points of the sequence of normalized consecutive prime differences, Artin’s primitive root conjecture, arithmetic progressions of primes with a fixed common difference, prime ideals inthe ring of integers of number fields, irreducible polynomials, the coefficients of a class of modular forms including Ramanujan’s tau-function form, quadratic twistsof a class of elliptic curves including the congruent number elliptic curve, and results obtained assuming the Elliott–Halberstam and generalized Elliott–Halberstam conjectures. The results often take the form of establishing bounded gaps for primes of a particular form.
Andrews introduced the partition function
$\overline {C}_{k, i}(n)$
, called the singular overpartition function, which counts the number of overpartitions of n in which no part is divisible by k and only parts
$\equiv \pm i\pmod {k}$
may be overlined. We prove that
$\overline {C}_{6, 2}(n)$
is almost always divisible by
$2^k$
for any positive integer k. We also prove that
$\overline {C}_{6, 2}(n)$
and
$\overline {C}_{12, 4}(n)$
are almost always divisible by
$3^k$
. Using a result of Ono and Taguchi on nilpotency of Hecke operators, we find infinite families of congruences modulo arbitrary powers of
$2$
satisfied by
$\overline {C}_{6, 2}(n)$
.
for triple product L-functions, where
$\Psi $
is a fixed Hecke–Maass form on
$\operatorname {\mathrm {SL}}_2(\mathbb {Z})$
and
$\varphi $
runs over the Hecke–Maass newforms on
$\Gamma _0(p)$
of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent
$5/4$
is the strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if one assumes the Ramanujan conjecture in both the integral and half-integral weight cases.
Under the triple product formula, our result may be understood as a strong level aspect form of quantum ergodicity: for a large prime p, all but very few Hecke–Maass newforms on
$\Gamma _0(p) \backslash \mathbb {H}$
of bounded eigenvalue have very uniformly distributed mass after pushforward to
$\operatorname {\mathrm {SL}}_2(\mathbb {Z}) \backslash \mathbb {H}$
.
Our main result turns out to be closely related to estimates such as
where the sum is over those n for which
$n p$
is a fundamental discriminant and
$\chi _{n p}$
denotes the corresponding quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.
Suppose that $G$ is a simple reductive group over $\mathbf{Q}$, with an exceptional Dynkin type and with $G(\mathbf{R})$ quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the Fourier expansion of modular forms on $G$ along the unipotent radical of the Heisenberg parabolic. In this paper, we give the Fourier expansion of the minimal modular form $\unicode[STIX]{x1D703}_{Gan}$ on quaternionic $E_{8}$ and some applications. The $Sym^{8}(V_{2})$-valued automorphic function $\unicode[STIX]{x1D703}_{Gan}$ is a weight 4, level one modular form on $E_{8}$, which has been studied by Gan. The applications we give are the construction of special modular forms on quaternionic $E_{7},E_{6}$ and $G_{2}$. We also discuss a family of degenerate Heisenberg Eisenstein series on the groups $G$, which may be thought of as an analogue to the quaternionic exceptional groups of the holomorphic Siegel Eisenstein series on the groups $\operatorname{GSp}_{2n}$.
We study special cycles on a Shimura variety of orthogonal type over a totally real field of degree d associated with a quadratic form in $n+2$ variables whose signature is $(n,2)$ at e real places and $(n+2,0)$ at the remaining $d-e$ real places for $1\leq e <d$. Recently, these cycles were constructed by Kudla and Rosu–Yott, and they proved that the generating series of special cycles in the cohomology group is a Hilbert-Siegel modular form of half integral weight. We prove that, assuming the Beilinson–Bloch conjecture on the injectivity of the higher Abel–Jacobi map, the generating series of special cycles of codimension er in the Chow group is a Hilbert–Siegel modular form of genus r and weight $1+n/2$. Our result is a generalization of Kudla’s modularity conjecture, solved by Yuan–Zhang–Zhang unconditionally when $e=1$.