We study the effect of surface texture on an overlying turbulent flow for the case of textures made of an alternating slip/no-slip pattern, a common model for superhydrophobic surfaces, but also a particularly simple form of texture. For texture sizes $L^+ \gtrsim 25$, we have previously reported that, even though the texture effectively imposes homogeneous slip boundary conditions on the overlying, background turbulence, this is not its sole effect. The effective conditions only produce an origin offset on the background turbulence, which remains otherwise smooth-wall-like. For actual textures, however, as their size increases from $L^+ \gtrsim 25$ the flow progressively departs from this smooth-wall-like regime, resulting in additional shear Reynolds stress and increased drag, in a non-homogeneous fashion that could not be reproduced by the effective boundary conditions. This paper focuses on the underlying physical mechanism of this phenomenon. We argue that it is caused by the nonlinear interaction of the texture-coherent flow, directly induced by the surface topology, and the background turbulence, as it acts directly on the latter and alters it. This does not occur at the boundary where effective conditions are imposed, but within the overlying flow itself, where the interaction acts as a forcing on the governing equations of the background turbulence, and takes the form of cross-advective terms between the latter and the texture-coherent flow. We show this by conducting simulations where we remove the texture and introduce additional, forcing terms in the Navier–Stokes equations, in addition to the equivalent homogeneous slip boundary conditions. The forcing terms capture the effect of the nonlinear interaction on the background turbulence without the need to resolve the surface texture. We show that, when the forcing terms are derived accounting for the amplitude modulation of the texture-coherent flow by the background turbulence, they quantitatively capture the changes in the flow up to texture sizes $L^+ \approx 70{-}100$. This includes not just the roughness function but also the changes in the flow statistics and structure.