We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a comparison theorem between Greenberg–Benois $\mathcal {L}$-invariants and Fontaine–Mazur $\mathcal {L}$-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of Besser–de Shalit.
Compared with algebraic varieties the local monodromy of Drinfeld modules appears to be hopelessly complex: the image of the wild inertia subgroup under Tate module representations is infinite save for the case of potential good reduction. Nonetheless, we show that Tate modules of Drinfeld modules are ramified in a limited way: the image of a sufficiently deep ramification subgroup is trivial. This leads to a new invariant, the local conductor of a Drinfeld module. We establish an upper bound on the conductor in terms of the volume of the period lattice. As an intermediate step we develop a theory of normed lattices in function field arithmetic including the notion of volume. We relate normed lattices to vector bundles on projective curves. With the aid of Castelnuovo–Mumford regularity this implies a volume bound on norms of lattice generators, and the conductor inequality follows. Last but not least we describe the image of inertia for Drinfeld modules with period lattices of rank $1$. Just as in the theory of local $\ell$-adic Galois representations this image is commensurable with a commutative unipotent algebraic subgroup. However, in the case of Drinfeld modules such a subgroup can be a product of several copies of $\mathbf {G}_a$.
We prove the existence of $\mathrm {GSpin}_{2n}$-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of ${\mathrm {GSO}}_{2n}$ under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type $D^{\mathbb {H}}$, arising from forms of ${\mathrm {GSO}}_{2n}$. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin L-functions and improve on the construction of ${\mathrm {SO}}_{2n}$-valued Galois representations by removing the outer automorphism ambiguity.
Let $G$ be a split reductive group over the ring of integers in a $p$-adic field with residue field $\mathbf {F}$. Fix a representation $\overline {\rho }$ of the absolute Galois group of an unramified extension of $\mathbf {Q}_p$, valued in $G(\mathbf {F})$. We study the crystalline deformation ring for $\overline {\rho }$ with a fixed $p$-adic Hodge type that satisfies an analog of the Fontaine–Laffaille condition for $G$-valued representations. In particular, we give a root theoretic condition on the $p$-adic Hodge type which ensures that the crystalline deformation ring is formally smooth. Our result improves on all known results for classical groups not of type A and provides the first such results for exceptional groups.
A superelliptic curve over a discrete valuation ring $\mathscr{O}$ of residual characteristic p is a curve given by an equation $\mathscr{C}\;:\; y^n=\,f(x)$, with $\textrm{Disc}(\,f)\neq 0$. The purpose of this article is to describe the Galois representation attached to such a curve under the hypothesis that f(x) has all its roots in the fraction field of $\mathscr{O}$ and that $p \nmid n$. Our results are inspired on the algorithm given in Bouw and WewersGlasg (Math. J.59(1) (2017), 77–108.) but our description is given in terms of a cluster picture as defined in Dokchitser et al. (Algebraic curves and their applications, Contemporary Mathematics, vol. 724 (American Mathematical Society, Providence, RI, 2019), 73–135.).
We prove Fermat’s Last Theorem over $\mathbb {Q}(\sqrt {5})$ and $\mathbb {Q}(\sqrt {17})$ for prime exponents $p \ge 5$ in certain congruence classes modulo $48$ by using a combination of the modular method and Brauer–Manin obstructions explicitly given by quadratic reciprocity constraints. The reciprocity constraint used to treat the case of $\mathbb {Q}(\sqrt {5})$ is a generalization to a real quadratic base field of the one used by Chen and Siksek. For the case of $\mathbb {Q}(\sqrt {17})$, this is insufficient, and we generalize a reciprocity constraint of Bennett, Chen, Dahmen, and Yazdani using Hilbert symbols from the rational field to certain real quadratic fields.
We prove new cases of the Inverse Galois Problem by considering the residual Galois representations arising from a fixed newform. Specific choices of weight
$3$
newforms will show that there are Galois extensions of
${\mathbb Q}$
with Galois group
$\operatorname {PSL}_2({\mathbb F}_p)$
for all primes p and
$\operatorname {PSL}_2({\mathbb F}_{p^3})$
for all odd primes
$p \equiv \pm 2, \pm 3, \pm 4, \pm 6 \ \pmod {13}$
.
In this paper, we prove results about solutions of the Diophantine equation $x^p+y^p=z^3$ over various number fields using the modular method. First, by assuming some standard modularity conjecture, we prove an asymptotic result for general number fields of narrow class number one satisfying some technical conditions. Second, we show that there is an explicit bound such that the equation $x^p+y^p=z^3$ does not have a particular type of solution over $K=\mathbb {Q}(\sqrt {-d})$, where $d=1,7,19,43,67$ whenever p is bigger than this bound. During the course of the proof, we prove various results about the irreducibility of Galois representations, image of inertia groups, and Bianchi newforms.
We determine the local deformation rings of sufficiently generic mod $l$ representations of the Galois group of a $p$-adic field, when $l \neq p$, relating them to the space of $q$-power-stable semisimple conjugacy classes in the dual group. As a consequence, we give a local proof of the $l \neq p$ Breuil–Mézard conjecture of the author, in the tame case.
In earlier work, the first named author generalized the construction of Darmon-style $\mathcal {L}$-invariants to cuspidal automorphic representations of semisimple groups of higher rank, which are cohomological with respect to the trivial coefficient system and Steinberg at a fixed prime. In this paper, assuming that the Archimedean component of the group has discrete series we show that these automorphic $\mathcal {L}$-invariants can be computed in terms of derivatives of Hecke eigenvalues in $p$-adic families. Our proof is novel even in the case of modular forms, which was established by Bertolini, Darmon and Iovita. The main new technical ingredient is the Koszul resolution of locally analytic principal series representations by Kohlhaase and Schraen. As an application of our results we settle a conjecture of Spieß: we show that automorphic $\mathcal {L}$-invariants of Hilbert modular forms of parallel weight $2$ are independent of the sign character used to define them. Moreover, we show that they are invariant under Jacquet–Langlands transfer and, in fact, equal to the Fontaine–Mazur $\mathcal {L}$-invariant of the associated Galois representation. Under mild assumptions, we also prove the equality of automorphic and Fontaine–Mazur $\mathcal {L}$-invariants for representations of definite unitary groups of arbitrary rank. Finally, we study the case of Bianchi modular forms to show how our methods, given precise results on eigenvarieties, can also work in the absence of discrete series representations.
We propose a conjecture that the Galois representation attached to every Hilbert modular form is noncritical and prove it under certain conditions. Under the same condition we prove Chida, Mok and Park’s conjecture that Fontaine-Mazur L-invariant and Teitelbaum-type L-invariant coincide with each other.
We prove a local–global compatibility result in the mod $p$ Langlands program for $\mathrm {GL}_2(\mathbf {Q}_{p^f})$. Namely, given a global residual representation $\bar {r}$ appearing in the mod $p$ cohomology of a Shimura curve that is sufficiently generic at $p$ and satisfies a Taylor–Wiles hypothesis, we prove that the diagram occurring in the corresponding Hecke eigenspace of mod $p$ completed cohomology is determined by the restrictions of $\bar {r}$ to decomposition groups at $p$. If these restrictions are moreover semisimple, we show that the $(\varphi ,\Gamma )$-modules attached to this diagram by Breuil give, under Fontaine's equivalence, the tensor inductions of the duals of the restrictions of $\bar {r}$ to decomposition groups at $p$.
We show that the mod p cohomology of a simple Shimura variety treated in Harris-Taylor’s book vanishes outside a certain nontrivial range after localizing at any non-Eisenstein ideal of the Hecke algebra. In cases of low dimensions, we show the vanishing outside the middle degree under a mild additional assumption.
We revisit the paper [Automorphy lifting for residually reducible$l$-adic Galois representations, J. Amer. Math. Soc. 28 (2015), 785–870] by the third author. We prove new automorphy lifting theorems for residually reducible Galois representations of unitary type in which the residual representation is permitted to have an arbitrary number of irreducible constituents.
Let $n$ be either $2$ or an odd integer greater than $1$, and fix a prime $p>2(n+1)$. Under standard ‘adequate image’ assumptions, we show that the set of components of $n$-dimensional $p$-adic potentially semistable local Galois deformation rings that are seen by potentially automorphic compatible systems of polarizable Galois representations over some CM field is independent of the particular global situation. We also (under the same assumption on $n$) improve on the main potential automorphy result of Barnet-Lamb et al. [Potential automorphy and change of weight, Ann. of Math. (2)179(2) (2014), 501–609], replacing ‘potentially diagonalizable’ by ‘potentially globally realizable’.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of
$\mathbb {Z}_{S}$
-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod
$\ell $
representations of the absolute Galois group of L, we prove that the same holds also for the
$\mathcal {O}_{L,S}$
-points.
Let f and g be two cuspidal modular forms and let
${\mathcal {F}}$
be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space
$\mathcal {W}$
. Using ideas of Pottharst, under certain hypotheses on f and
$g,$
we construct a coherent sheaf over
$V \times \mathcal {W}$
that interpolates the Bloch–Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range (i.e, the range where the p-adic L-function
$L_p$
interpolates critical values of the global L-function). We show that the support of this sheaf is contained in the vanishing locus of
$L_p$
.
Under an assumption on the existence of $p$-adic Galois representations, we carry out Taylor–Wiles patching (in the derived category) for the completed homology of the locally symmetric spaces associated with $\operatorname{GL}_{n}$ over a number field. We use our construction, and some new results in non-commutative algebra, to show that standard conjectures on completed homology imply ‘big $R=\text{big}~\mathbb{T}$’ theorems in situations where one cannot hope to appeal to the Zariski density of classical points (in contrast to all previous results of this kind). In the case where $n=2$ and $p$ splits completely in the number field, we relate our construction to the $p$-adic local Langlands correspondence for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$.
We show that the compactly supported cohomology of certain $\text{U}(n,n)$- or $\text{Sp}(2n)$-Shimura varieties with $\unicode[STIX]{x1D6E4}_{1}(p^{\infty })$-level vanishes above the middle degree. The only assumption is that we work over a CM field $F$ in which the prime $p$ splits completely. We also give an application to Galois representations for torsion in the cohomology of the locally symmetric spaces for $\text{GL}_{n}/F$. More precisely, we use the vanishing result for Shimura varieties to eliminate the nilpotent ideal in the construction of these Galois representations. This strengthens recent results of Scholze [On torsion in the cohomology of locally symmetric varieties, Ann. of Math. (2) 182 (2015), 945–1066; MR 3418533] and Newton–Thorne [Torsion Galois representations over CM fields and Hecke algebras in the derived category, Forum Math. Sigma 4 (2016), e21; MR 3528275].
Let $A$ be the product of an abelian variety and a torus defined over a number field $K$. Fix some prime number $\ell$. If $\unicode[STIX]{x1D6FC}\in A(K)$ is a point of infinite order, we consider the set of primes $\mathfrak{p}$ of $K$ such that the reduction $(\unicode[STIX]{x1D6FC}\hspace{0.2em}{\rm mod}\hspace{0.2em}\mathfrak{p})$ is well-defined and has order coprime to $\ell$. This set admits a natural density. By refining the method of Jones and Rouse [Galois theory of iterated endomorphisms, Proc. Lond. Math. Soc. (3)100(3) (2010), 763–794. Appendix A by Jeffrey D. Achter], we can express the density as an $\ell$-adic integral without requiring any assumption. We also prove that the density is always a rational number whose denominator (up to powers of $\ell$) is uniformly bounded in a very strong sense. For elliptic curves, we describe a strategy for computing the density which covers every possible case.